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1 Introduction 
The goals of this project were (1) to develop a theory for modeling large-scale IP networks based 
on fluid models and the resulting solution techniques, (2) to integrate these methodologies into 
existing tools, such as ns [1]; and to use the theory and tools to develop new control strategies for 
large-scale networks.   

The main outcomes of the project were the following: 

• Fluid models for large networks carrying TCP and non-TCP flows:  Based on the use of 
stochastic differential equations, we developed simple models characterizing the   behavior 
of TCP and non-TCP flows as they traverse through a network. These models characterize 
the control loop behavior of TCP flows and their interactions with routers. The time varying 
behavior of average quantities, such as queue length, packet loss probability, etc., is captured 
through a set of differential equations.  Stationary behavior is characterized through a fixed 
point problem. 

• Fluid models for Internet worm and BGP failure spread:  We developed similar models 
that describe the spreading behavior of Internet worms, such as Code Red, and of cascading 
router failures. 

• Congestion controllers for routers: We developed new active queue management policies, 
based on proportional integral control (PI) that provides more robust and stable TCP 
behavior.  These controllers were extended to provide quality of service in the form of 
minimum throughput guarantees to TCP flows.  

• Fluid simulation tools:  We developed tools for solving the performance of large networks 
based on the fluid techniques.  Moreover, tools that combine packet-level with fluid-level 
simulation were also developed.  These were integrated into several existing simulation tools 
including ns. 

We describe each of these outcomes in the remainder of this report.  Prior to this, we motivate 
the need for our project. 

2 Motivation 
Networks continue to increase in size and complexity. The variety and interaction of the 
applications, the middleware and transport protocols, the routing protocols, and the router/switch 
resource management algorithms make the design, development, control and management of 
future networks an exceptionally difficult task.   These difficulties can be eased by the 
development of analytic and numerical techniques (as opposed to detailed, brute force 
simulation) of such systems. 

In the past, discrete-event simulation has been the performance-modeling tool of choice. This has 
been primarily due to the predominance of responsive flows (e.g., TCP) in network workloads, 
and the difficulties of analytically or numerically characterizing the performance of such flows. 
Although considerable progress has been made in modeling open-loop streaming applications 
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(e.g., video over UDP), these advances have had little impact on the modeling of responsive 
flows.  While significant progress has been made in simulating large networks with responsive 
flows, such simulations are still very time consuming and require significant computing 
resources.  This motivates the need for scalable models of networks that can be efficiently solved 
to obtain performance measures such as throughput, link loss rates, end-to-end packet delays, 
which in turn can be used to estimate application-level performance measures. 

The remainder of this report is organized as follows:  we describe the fluid modeling 
methodology for TCP/IP networks in Section 3 and its adaptation to the characterization of worm 
and failure spreading behavior in Section 4.  In Section 5, we show how the differential 
equations describing the behavior of TCP/IP networks can be used to develop congestion 
controllers at routers to interact with TCP to provide different performance to different classes of 
sessions. Following this, we describe the tools developed during the project (Section 6).  Section 
7 offers some conclusions. 

3 Fluid Models for TCP/IP networks 
In this section, we summarize our work on modeling TCP/IP networks.  We begin with a 
description of our network model.  Let V be a collection of routers making up a network. Each 
router1 v ∈V has a transmission capacity of Cv bits per second. In addition, router v can buffer up 
to Bv bits. Associated with v is an active queue management policy characterized by a probability 
discard function, pv(xv), which takes as its argument xv, the average queue length of v. One 
popular discard function, associated with the RED (random early discard) active queue 
management mechanism [2], is 
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where tv
min, tv

max, and pv
max are configurable parameters.  We make the reasonable assumption 

that pv is non-decreasing in xv. 

3.1 Time varying models of TCP/IP networks 

The behavior of a TCP/IP network is stochastic in nature.  Hence, we find that it is best described 
using stochastic differential equations.  We begin with a treatment of a single link and then show 
how it generalizes to a network setting. 

3.1.1 Single link 

Stochastic differential equations (SDEs) have been widely used in system modeling. Most of the 
effort has been directed to Wiener-process-driven SDEs.  However, the primary sources of 

                                                           
1 More precisely, each router interface has a transmission capacity, a buffer, etc. We will use the term router to refer 
to an outgoing router interface. 
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randomness in high-speed networks are discrete events such as losses in the TCP congestion 
control setting. Such a network can be modeled by stochastic differential equations driven by 
jump processes.  For example, the additive increase of the TCP window size can be modeled by 
a differential equation, while the multiplicative decrease triggered by the losses can be modeled 
by a jump process. We use jump processes to model the packet losses inherent in the TCP-AQM 
dynamics. Since the marks delivered by proposed AQM algorithms are assumed to be randomly 
generated, we use Poisson processes with random rates that are functions of the (average) queue 
lengths at the routers. The jumps in these processes represent the losses in the TCP-AQM 
dynamics.  

Consider a single congested router operating with a RED AQM scheme, as described earlier, 
supporting N TCP flows.  The discard probability is p(x(t)) where x(t) is the average queue 
length at the router at time  t > 0.  In particular, x is an estimate based on the instantaneous queue 
length q(t) via an exponential weighing parameter α and sampling interval δ (i.e., the queue 
length q(t) is sampled periodically every δ units of time). The rate, λi, at which losses are 
incurred by flow i at time t is p(x(t)) Ti, where Ti is the throughput of that flow, Wi/Ri(q). 

We have the following stochastic differential equation for the window size of flow i =1,… , N : 

                                                      .2/)(/ iiii dNWqRdtdW −=  

Since the loss generated by the RED AQM policy has independent increments (i.e., dNi (t) is 
independent of Wi), the expected window-size process is described by  

                                               ].[2/][)(/][ iiii dNEWEqRdtdWE −=  

Since E[dNi] = p(x) E[Wi]/Ri(q), we have  

                                                      )(
)(2

][
)(

1][ 2

xp
qR

WE
qRdt

WdE

i

i

i

i −=                                               (2) 

We write the exponentially weighed moving queue length average as  

                                              )()()1())1(( δαδαδ kqkxkx +−=+                                                (3) 

This equation contains the AQM sampling parameter δ.  Finally, we need an equation for the 
expected instantaneous queue length q(t). For nodes that are busy most of the time the following 
equation is a good approximation: 

                                          .)(/][)0)(()(
1

∑
=

+>−=
N

i
ii qRWECtq

dt
tdq I                                            (4) 

This results in N+2 coupled equations and N+2 unknowns, x, q, E[Wi(t)], i = 1,…,N which can be 
solved numerically using a numerical scheme such as the Runge-Kutta method. The solution 
provides an estimate of the average transient behavior of the system for a given sampling  
interval δ. 
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3.1.2 Extension to the network case 

The extension to the network case is fairly straightforward. We represent the network by a binary 
matrix A where the rows represent the different flows and the columns represent the different 
routers (queues). We modify equation (2) to account for losses arriving from each router in the 
path. If W is defined as the vector of the window sizes of the flows, x the vector of estimated 
average queue lengths at each router, q the vector of instantaneous queue lengths at each router, 
and P(x)  the vector of loss probabilities at each router, then we define a matrix AP where every 
column of A is multiplied by the corresponding element of P .Thus, AP is an indicator of the loss 
probabilities seen by each flow at each router. If a flow does not traverse a particular router, the 
corresponding loss probability is set to 0.  The combined loss seen by a particular flow i is then 
given by 1-∏(1- AP (x)i). Thus, (2) is modified to  

                                        ( )))((1
)(2

][
)(

1][ 2

∏−−= i
i

i

i

i

R
WE

Rdt
WdE

xAP
qq

                                         (5) 

The equations for the average queue size and instantaneous queue size at each router remains 
unchanged. 

The model described above captures the important details of a network supporting TCP flows.  
There are some characteristics of such networks that are missing.  For example, the model so far 
assumes that congestion feedback is instantaneous.  This, of course, is not true, as there is at least 
a round trip propagation delay before feedback is returned.  In addition, the above model does 
not capture certain flow constraints imposed by a link having a maximum capacity. These issues 
are dealt with in more detail in [3] and [4], as well as in Appendices A and B of this report.  

Figure 1 illustrates the accuracy of the fluid model in comparison to discrete event simulation.  
The average window size of a TCP session is shown over time for a network of six routers and 
several thousand TCP sessions. The number of sessions is reduced by half at at t = 30 and 
doubled at t = 60. We observe that the fluid model agrees with the simulation. 

 

 

 

 

 

 

 

 

Figure 1:  Comparison of discrete simulation and fluid model, average window size plotted as function of time 
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3.2 Steady State Models of TCP/IP Networks 

We have described models that can be used to characterize the time varying behavior of large 
networks.  In many cases an analyst is interested only in the steady state behavior of the network.  
In such cases, it is easier to characterize this behavior by solving a fixed-point problem.  We 
briefly describe this approach in this section.  

We consider a simple workload consisting of N infinite duration TCP flows labeled i = 1… , N.  
Let Vi = (ji,1, ji,2,…, ji,n(i) ) be the ordered set of routers (i.e., route, path) taken by packets of flow 
i, where  ji,m ∈V, m = 1,…,n(i) and n(i)  is the number of links on the route. From the perspective 
of a link v∈V, it is useful to introduce Sv to be the set of TCP flows that traverse v.  In addition, 
let Vi(u) = (ji,1, …, u) be the portion of the path from the data source to router u∈ Vi inclusive. 

We (and others) have observed through measurements on the Internet and in numerous 
simulations that 

• in the absence of a maximum rate constraint, each TCP flow traverses at least one congested 
router (here a congested router is one in which a flow suffers packet loss); 

• each congested router is nearly fully utilized; 

• each TCP flow exhibits a throughput that can be expressed as a function of the packet 
loss rate and average round trip time that it incurs.  Denote this by T(q,R) where q 
denotes the end-end loss rate and R  the round trip time. We have derived accurate 
expressions for T() in earlier work [5]. 

Consider the simple example where the N  TCP flows share a single congested router with 
bandwidth C and buffer size B.  Let us assume that this router includes the RED active queue 
management policy with a discard function such as that in equation (1).  Let x denote the long 
term average queue length of this congested router.  We denote the probability discard function 
as p(x).  We approximate the average round trip time of the i-th flow as  

  Ri(x) = Ai + x/C                (6) 

where Ai denotes the sum of the propagation delay and transmission time at all routers on i's 
path.  The second term captures the contribution of congestion delay at the congested router to 
the round trip time.  The assumption that the congested router is fully utilized (i.e., operates at 
full throughput) yields 

                                             ∑
=

=−+
N

i
ii CxpCxAxpT

1
))(1)(/),(( ,                                             (7) 

which can be solved to obtain the average queue length of the congested router and, 
subsequently, the round trip time and the loss rate. This yields the steady state behavior of the 
system. We note that there exists a unique solution for x in the range [0,B].  
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Before leaving this example, we comment on the generality of our approach.  First, the N flows 
need not be TCP flows. It is sufficient that the i-th flow be characterized by a throughput 
function, T(), of the form postulated above.  Most congestion control algorithms that have been 
proposed for next generation unicast and multicast transport protocols exhibit such throughput 
functions.  These functions can be determined analytically, though simulation, or through 
measurement.  Second, the approach applies equally as well if the active queue management 
policy marks packets rather than drops them. Last, although described in the context of a best 
effort service class, the basic approach is easily extended to the case of proposed Diff-Serv 
mechanisms.  Consequently, the expression derived in [6] for the throughput of a flow operating 
in a Diff-Serv environment can similarly be used in our model.  Finally, we note that constant bit 
rate, “non-responsive'' flows can be accounted for in this model by simply subtracting their 
aggregate flow rate from the link capacity. 

The above single congested router scenario is easily generalized to an arbitrary network 
supporting a workload of infinite duration responsive flows.  Let x = {xv}v∈V . Generalizing (6), 
we approximate the average round trip time of session i  by: 

                                                           v
Vv

vii CxAR
i

/)( ∑
∈

+=x                                                        (8) 

Similarly, let qi(x) denote the probability that a flow i packet is lost on its end-to-end path; this 
quantity is given by 

                                                             ∏
∈

−−=
)(

))(1(1)(
vVv

vvi
i

xpq x                                               (9) 

Note that when Ti is a function of the probability of packet loss and the average round trip time 
(as postulated earlier), the above relations allow us to express Ti as a function of the average 
queue lengths. Henceforth we write the flow throughput as Ti(x).  

Let S ⊆ V denote the set of congested routers, i.e., those routers whose bandwidths are fully 
utilized.  We have the following set of equations, one for each congested router, 

                                            ∏∑
∈∈

∈=−
)(

,))(1()(
vVu

vuu
Si

i
iv

SvCxpT x   

In addition, for the routers that are not congested, we have 

                                                           Svxv ∉= ,0    

Thus we have |S| nonlinear equations with |S| unknowns.  Solving these equations yields a set of 
{xk*} that can be used in turn to obtain the throughputs of all flows, their average round trip 
times and loss rates.  Generalizations of our approach to responsive flows, other than TCP and to 
classes of service other than best effort, are identical to those described above for the single 
bottleneck router.  Additional details can be found in [6]. 
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We present two examples to illustrate this approach, one with a single congested router, and the 
other with two congested routers. 

A single bottleneck router.  We have N flows traversing a common router.  We are interested in 
the accuracy of the model as N grows. Hence, we take C = 3N/40 Mbs. The probability discard 
function is taken to be that corresponding to a RED mechanism with parameters p0

max = 0.1, t0
min 

= N/2, t0
max = 3N/2, and B0 = 3N.  The constant term in the average round trip delay for flow i is 

taken to be (6+2i)ms, i=1,…,N.  Thus, the round trip times range from 8ms to (2N+8)ms.  

We use the following expression for the throughput of a TCP flow taken from  [5]: 

                                   
)1/()())(,()1)((

))(,(2/)(/)1(),(
0 qTqFqWqQqWR

qWqQqWqqMRqT
−++

++−
=  

where M is the packet size measured in bits and 

                                 ,9/1)3/()1(23/2)( +−+= qqqW   

                             )},)1(1/()))1(1()1(1)()1(1(,1{min),( 333 ww qqqqwqQ −−−−−+−−= −  

                                 .32168421)( 65432 qqqqqqqF ++++++=   

This has been shown to be accurate for a wide range of parameters [5]. Although this expression 
was derived for the case of a TCP flow using TCP-Reno, it has been shown to accurately predict 
the performance of other versions of TCP such as TCP-SACK. 

We solve this model for different numbers of flows, N=20, 40, 80, 160 and compare its 
predictions with those obtained by simulating the system with ns [1]. The predicted average 
queue size and loss rate are compared to those obtained through simulation in Table 1.  We 
observe that the loss rate predictions are accurate, within 8% of those obtained from the 
simulation. The predictions for the average queue lengths are not as accurate; they fall within 
20% of those obtained through simulation. Note that this will result in errors in the average 
round trip times of 5%-20%. 

Avg. queue length Loss rate No. flows 
Model sim. Model sim. 

20 18.0 20.9 0.040 0.037 
40 32.9 38.4 0.032 0.031 
80 58.3 67.9 0.023 0.024 

160 102.5 113.3 0.014 0.015 

Table 1. Predicted vs. Simulated Average Queue Length and Loss Rate. 

Figures 2 and 3 illustrate the individual flow throughputs as predicted by the model and as 
obtained from the simulation for N = 80, 160. We observe that the difference between analysis 
and simulation is always less than 12% and usually less than 5% in the case of N = 80.  We also 
note that the difference decreases as the system size increases - a very desirable property. In the 
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case of N = 160, the worst individual flow error is less than 11%, and the errors are typically less 
than 3%. 
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                   Figure 2:  Flow throughputs, N = 80                 Figure 3:  Flow throughputs, N = 160 
Two congested links. The two-congested-router topology considered is shown in Figure 4.  
Routers 3 and 4 are configured so that they are not congested. There are three sets of flows in the 
simulation.  The first set, consisting of 20 TCP flows, goes from router 3 to router 1.  The second 
set of 40 TCP flows go from router 4 to router 2.  The last set of 20 TCP flows go from router 0 
to router 2.  Router 0 is configured with a RED discard function with parameters p0

max = 0.1, t0
min 

= 20, t0
max = 60, and a buffer capacity B0 =120. The capacity and propagation delay of router 0 is 

3Mbs and 20ms, respectively.  Router 1 is configured with a RED discard function with 
parameters p1

max = 0.1, t1
min = 30, t1

max = 90, B1  =180.  The capacity and propagation delay of 
router 1 are 4.5Mbits/sec and 20ms, respectively. The first two sets of TCP flows go through one 
congested router, while the third goes through both. 

 

 

 

 

 

 

Figure 4:  Two congested link example 

Tables 2 and 3 show the average queue lengths and loss rates of each of the congested routers. 
Our preliminary investigations indicate that the differences between predicted performance and 
that obtained through simulation improve when we increase the number of flows while scaling 
up the RED parameters and the router bandwidth accordingly.  Tables 4 and 5 show the average 
queue lengths and loss rates when all parameters are doubled, number of flows, capacities, t0

min, 

3 4 

0 1 2 
congested congested 

Flow set I Flow set II 

Flow set III 
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t1
min,  t1

max, and t0
max.  Once again, we see excellent agreement between analysis and simulation 

for loss and throughput measures, with good agreement for the average queue length. 

Avg. queue length Loss rate Router 
Model sim. Model sim. 

0 33.8 39.2 0.035 0.032 
1 54.8 64.1 0.041 0.038 

Table 2. Predicted vs. Simulated Average Queue Length and Loss Rate. 

Flow throughput Flow 
set model Sim. 

1 28.6 27.4
2 23.9 23.2
3 8.9 9.7

Table 3. Predicted vs. Simulated Throughput. 

Avg. queue length Loss rate Router 
Model sim. Model sim. 

0 67.5 78.8 0.034 0.033 
1 109.9 128.7 0.042 0.039 

Table 4. Predicted vs. Simulated Average Queue Length and Loss Rate. 

Flow throughput Flow 
set model Sim. 

1 27.2 28.7
2 23.2 23.7
3 9.9 8.8

Table 5. Predicted vs. Simulated Throughput. 

4 Fluid Models for Worms and Failures 

4.1 Worms 

Computer “worms" are programs that self-propagate across a network exploiting security or 
policy flaws in widely-used services. In recent years, two major classes of worms, scan-based 
worms and email worms, have frequently attacked the Internet.  Email worms propagate through 
emails and compromise computers when email users execute worm email attachments or simply 
view worm emails --- they require human interference to propagate and thus propagate relatively 
slowly. On the other hand, scan-based worms propagate by generating IP addresses to scan and 
directly compromise any vulnerable target computer --- they need no human activation and thus 
are able to propagate much faster than email worms.  For example, Slammer in January 2003 
infected more than 90% of vulnerable computers in the Internet within just 10 minutes.  Recent 
well-known worms, Code Red, Code Red II, Slammer, Blaster, Sasser, are all scan-based worms.  
We concentrate on scan-based worms. 
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Attackers have tried many scanning strategies in previous worms. Code Red and Slammer 
uniformly scanned the entire IPv4 space.  Code Red II used a local preference scan: it had a 
higher probability to scan an address within the same Class B or Class A network than a random 
address.  Blaster sequentially scanned the Internet and chose its sequential-scan starting point 
from a local address with probability 0.4. 

Based on classical epidemic spreading models, we have developed fluid models that can be used 
to study different scanning strategies such as those mentioned above.   We present a simple 
model for a worm using a simple random scanning policy and then describe how it can be 
adapted to model other policies. 

Consider a population of N vulnerable hosts, each of which has its own IP address.  Let I(t) 
denote the number of infectious hosts at time t. Then [N- I(t)] is the number of susceptible hosts 
at time t. The epidemic model for a homogeneous system is: 

dI(t)/dt = β I(t)[N-I(t)]  

where β is the pairwise rate of infection in epidemiology studies from infectious hosts I(t) to 
susceptible hosts [N- I(t)].  At t = 0, I(0) hosts are infectious and the other [N-I(0)] hosts are all 
susceptible.  

Now β is given in terms of the scan rate of a computer, η, and the size of the address space, Ω, 
within which lie the vulnerable hosts. For example, in the case of Code Red, N=360,000, η=358 
scans /min., and Ω=232.  Figure 5 shows how the number of infected hosts grows as a function of 
time.  One observes that Code Red requires several hundred minutes to take off. 

 

 

 

 

 

 

 

 

Figure 5:  The classic Code Red worm 

The model can be used to evaluate the performance of a number of different scanning strategies.  
These include: 
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• Idealized worm:  All infected nodes are perfectly synchronized scanning only vulnerable 
hosts and only once. 

• Flash worm:  Infected worms know the identities of all vulnerable hosts and perform a 
random scan over them. 

In both cases Ω = Ν. The performances of such worms are illustrated in Figure 6 with and 
without a two second infection delay. 
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Figure 6:  Idealized and  flash worms with and without a two second delay 

We have also adapted the model to study routing and local preference worms.  Briefly, a routing 
worm is one that uses BGP routing tables to avoid portions of the IP address space that do not 
contain hosts.  This has the effect of reducing the search space by 70%.  A local preference worm 
scans addresses in the vicinity of the infected host with higher probability than distant addresses.  
Additional details of the models and its analysis are found in [8]. 

Figure 7 illustrates the performance of a routing worm and a local preference worm where the 
host scans addresses in its vicinity with probability 0.5. 

From our analysis, we derive the following understanding of worm scanning strategies: 

• Cooperation among infected hosts for scanning does not significantly increase a worm's 
spreading speed. 

• A local preference scan increases a worm's propagation speed when vulnerable hosts are not 
uniformly distributed. The optimal local-scan probability increases as a function of the local-
scan network size. 

• When vulnerable hosts are uniformly distributed, divide-and-conquer scan, sequential scan, 
and uniform scan are equivalent in terms of a worm's propagation speed. 
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• A flash worm that uses uniform scan is an optimal spreading worm converged both from hit-
list worm and from routing worm; a flash worm that makes sure no IP address is scanned 
more than once is the fastest spreading worm in terms of worm scanning strategy. 

• For a sequential scan worm, such as Blaster, using local preference in selecting its starting 
point slows down the worm's propagation speed. 

• For a selective attack worm, such as a routing worm [8], when the density of vulnerable hosts 
in the target domain is higher than the density in other domains, the worm propagates faster 
in the target domain if it only scans the target domain instead of all domains (and vice versa). 
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Figure 7:  Comparison of routing and local preference worms with Code Red 

In addition, based on our models, we have developed statistical detection algorithms for worms.  
Briefly, they look for an exponential increase in scan traffic that is characteristic of the spread of 
a worm.  Additional details are found in [9], as well as in Appendix C of this report. 

4.2  Cascading BGP failures 

The Internet is a large collection of Autonomous Systems (AS) connected by the BGP routing 
infrastructure. The BGP maintains connectivity between AS’s. It automatically reconfigures and 
computes routing tables when it detects a link failure. This computation starts locally around the 
failure point, and the information propagates through the Internet.  The Internet routing table 
convergence has been observed to take tens of minutes.  We developed models that reflect the 
behavior of BGP.  Our analysis confirms that it is indeed possible to have cascading failures in 
the BGP routing infrastructure. Our results indicate the presence of phase transitions in these 
systems, and the presence and intensity of the phase transitions are strongly dependent on system 
parameters.  We use the term phase transitions in the sense used by Erdös and Renyi in their 
work on random graphs that is “an abrupt change in a global system property”. The phase 
transition is to be interpreted as a sharp threshold rather than the definition used in statistical 
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mechanics. In our analysis, we observe that the propensity for phase transitions increases as 
clique size increases, and additionally also increases as the processing capacity of the routers 
decreases. 

We consider a simple scenario with a finite set of N routers that are all connected to each other, 
i.e., form a clique. Let the number of down routers at any instant be D(t). We define a “down” 
router to be one that does not have a functioning routing table, so a router that is in the process of 
rebooting and obtaining state dumps is also defined to be “down”. Now, we study the system of 
the number of down routers. The arrival and departure process to the system is defined as: 

                                            α(t) := number of arrivals in [0; t)                                                         

                                            δ(t) := number of departures in [0; t)                                                   

Consider the process δ(t). The down routers come up with the help of the routers that are 
currently up (N(t)- D(t)). We define the service rate of an up router as ks, where ks is the average 
number of down routers a functioning router restores per unit time. Now, if N(t)-D(t) servers are 
up and providing service, the service received by a single down node is its share of the total 
service capacity of the system. Thus, the share received by a single router is (N(t) -D(t))/D(t). To 
account for the boundary condition D = 0, the denominator should actually be the term (D(t) + 
ka), where ka represents the ambient load on the servers, representing, for instance, processing of 
normal route advertisements, and prevents D → - ∞. However, for simplicity of exposition, we 
ignore the term as it does not affect the main observation we obtain later.  Hence, the number of 
departures in an infinitesimal time dt, d±(t), is defined by 

                                     dδ (t) = D(t) (N(t) - D(t))/D(t) ksdt = (N(t) - D(t)) ksdt                           (10) 

Resetting BGP sessions leads to two kinds of messages, withdrawal announcements and 
subsequently full state updates when the BGP session is restored. We model the rate at which a 
functioning router goes down due to the load imposed by the resetting of a single BGP session as 
kl. Typically, we expect ks >> kl, as BGP resets are not uncommon and restoring a single session 
is unlikely to cause a peer router to go down. Now, the average arrivals in an infinitesimal time 
dt,  dα(t), is given by the product of three quantities: the constant kl, the number of routers (BGP 
sessions) that are currently down D(t) (denoting the total load offered), and finally the number of 
routers currently up (that can go down), (N(t) - D(t)), i.e., 

                                                  dα (t) = klD(t)(N(t) - D(t))dt                                                      (11) 

Now D(t) is α (t - δt), hence combining (9) and (10) yields after some manipulation the 
following relation 

        dD/dt = - klD2
 + (ks + kl N)D – ksN                                                       

This is a Riccati equation, and without going into the actual solution of the equation, we 
immediately observe that the dynamical system described by this model exhibits a phase 
transition:  If the initial stateD(0) of the system is above a certain threshold, then as limt→∞ D(t) = 
N, else      lim t→∞ D(t) = 0. In other words, if by some exogenous process (e.g. CODE RED) we 
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manage to bring a certain number of the routers down, thereby resetting the BGP sessions, then 
depending upon that number, the system either fully recovers or there is a cascading failure. A 
simulation of the system with different initial conditions is shown in Figure 8, where ks /kl = 20 
and we plot two trajectories, one with D(0) = 21 and another with D(0) = 19.   Additional details 
of this work can be found in [10], as well as in Appendix D of this report. 

 
Figure 8:  Illustration of how the initial number of failed routers can result in very different behavior 

5 Congestion Controllers 
In Section 3, we presented a model that describes the behavior of a set of TCP flows in a network 
of AQM-based routers. Their behavior is described by a set of differential equations, which is the 
language of control theory.  For example, the behavior of a single TCP flow traversing a single 
bottleneck queue is illustrated in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9:  Control theoretic diagram of TCP 
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In the initial stages of the project, we performed a control theoretic analysis of the RED AQM 
protocol and presented guidelines for how to set its parameters.  In the process of doing this, we 
uncovered a number of deficiencies of RED and proposed instead a new AQM algorithm based 
on proportional integral control.   Two problems exhibited by RED are as follows: 

• the queue averaging mechanism introduces additional delay in the TCP control loop which 
makes TCP unstable in many situations. 

• RED couples the loss exhibited by a TCP session with the delay that its packets incur. 

The new PI AQM controller introduces phase lead, which is ideal for systems with feedback 
delay.   This leads to a speed of response faster than that of a stable RED mechanism.  In 
addition, it decouples loss and delay; in particular, it is possible to specify a fixed queuing delay 
with a PI controller.   Figure 10 compares the performance of a set of TCP sessions under RED 
and PI. 

 

Figure 10:  RED vs. PI control 

Details of this work can be found in [11] which is found in the Appendix. 

As part of the project, we also studied the problem of providing differential Quality of Service 
(QoS) to classes of TCP sessions.  Specifically, we develop algorithms based on the IETF 
proposed DiffServ architecture [12], [13] to provide minimum throughput guarantees to different 
collections of TCP sessions.  These algorithms rely on two components, multi-level PI AQM 
controllers residing at core routers that drop or mark packets differentially according to their 
colors and PI rate controllers residing at edge routers that monitor the throughput of these 
collections of TCP flows, marking packets as either red or green depending on whether or not the 
aggregate throughput exceeds its minimum rate.  Details are found in [14], which is found in 
Appendix E. 

Other results from this project include a study of the effect of uncontrollable flows on the 
behavior of TCP [15] and the development of algorithms to automatically tune AQM policies 
such as RED and PI [16]. 
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6 Tools 
As part of our project, we have implemented our fluid modeling methodology into the ns 
simulation software package.  In particular, we developed a fluid network node that accepts 
packets as inputs, converts them into fluids, and then outputs packets after suffering appropriate 
losses and delays as predicted by the fluid model.   This is illustrated in Figure 11.  Additional 
details can be found in [17], as well as in Appendix F. 

 

Figure 11:  Fluid simulation module within ns 

7 Summary 
Our project significantly advanced the state-of-the-art in scalable modeling and simulation.  We 
were the first to introduce the use of fluid models for the characterization of TCP flows within a 
large network. This is not standard practice.  We were the first to begin to examine TCP 
behavior, coupled with AQM, using control theoretic principles.  This is now standard practice 
and has resulted in significant advances in the development of better control mechanisms.  
Finally, we were the first to use fluid models to characterize worm spreading and cascading 
failures within the Internet.  Again, this has become standard practice. 

Finally, references [18] – [43] include additional results related to what has been discussed so far 
in the report.  They are not included in the Appendix. 
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Appendix A:  Fluid-based Analysis of a Network of AQM 
Routers Supporting TCP Flows with an Application to RED 

A1. INTRODUCTION 

Active queue management techniques were proposed in [8], [3] to both alleviate some congestion 
control problems for IP networks as well as provide some notion of quality of service. Modeling 
and analysis of such networks is important to understand their dynamics. While traditional discrete 
event simulations work well in general, even the most efficiently coded simulators suffer from the 
problem of scaling. We exploit fluid modeling to present a general methodology for the analysis 
of a network of routers that support active queue management with TCP flows. We use Poisson 
Counter Driven Stochastic Differential Equations to model the behavior of TCP traffic and derive 
a set of differential equations that describe the AQM policy and the router queuing process. Next, 
we develop a numerical scheme for obtaining the transient average behavior of a number of 
metrics including queue length, round trip time and TCP flow throughput from a set of coupled 
ordinary differential equations that result from our analysis. Given an AQM policy, we are able to 
get (expected) transient behavior of networks from our solution. We are able to handle large flows 
without a significant increase in computational complexity. 

We illustrate our approach by analyzing RED [8] using the techniques developed in Section 3.1. 
Our solution technique yields predictions that match well with those obtained through 
simulation. Our modeling and solution methodology lead to a straightforward discovery of a 
critical problem with the RED averaging mechanism, one not addressed elsewhere. Our scheme 
has similar aims, to obtain transient behavior by numerical solution of a system of equations, to a 
heuristic approach proposed in [9]. It is however not clear how and why the heuristics work in 
cases reported. 

A2. APPLICATION TO THE RED ACTIVE QUEUE MANAGEMENT 
POLICY 

We now present an application of the system, taking RED as the AQM policy, which has been 
shown to outperform Drop-Tail queues under certain scenarios. RED is a powerful mechanism to 
control traffic, potentially solving problems like flow synchronization, correlation of drop events 
while providing consistently high link utilizations. However, numerous problems have been cited 
with RED [10]. RED works well in certain scenarios, whereas it does very poorly, even worse 
than Drop-Tail, in other cases [6]. There is no clear understanding on how to tune various RED 
parameters that work well in all scenarios. Consequently, there is considerable nervousness in the 
community regarding deployment of RED, and numerous variations of RED have been proposed 
[5], [12], [4]. Some of the schemes have self-tuning parameters, while others maintain per-flow 
state. It is clear that there is a great need for thoroughly understanding the behavior of RED. We 
believe our techniques can help in that effort. 

We first consider a system in which there is a single congested router with a transmission 
capacity of C. Associated with this router is an active queue management (AQM) policy that is 
characterized by a packet discard function p(x) that takes as its argument an estimate of the 
average queue length at the router. The queue length of the router is denoted by q(t), t > 0. The 
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classical example of an AQM policy is RED [8] for which p(x) takes the form in the Figure 
below where tmin, tmax, and pmax are configurable parameters.    

Figure 12:  RED drop function 

We will compare the results obtained from our model to those obtained from simulating an 
equivalent system using the well-known ns simulator. Our differential equation solver was 
implemented as a MATLAB program (a simple implementation with 42 total lines of code) which 
takes the matrix A, where the rows represent the different flows and the columns represent the 
different routers (queues) in a network, and a link capacity vector C as input. We did not 
incorporate slow-start in our program. All routers are assumed to have the same RED parameters. 
The propagation (non-queueing) delay for each class of flows is kept at 200 ms.  The buffers are 
sized so that all losses are RED-related, i.e. no drop-tail losses occur on the network. The tmin is 
150 packets and the tmax is 200 packets. δ is a parameter in our solver which is not specified in 
RED. Instead RED updates the queue size estimate on the arrival of each packet. We can account 
for it in two different ways 

• ns updates the queue at every packet arrival. Thus, we choose δv to be l/bv, where bv is the 
instantaneous arrival rate at a queue measured in packets. δv thus becomes a function of 
time. 

• We choose a fixed value of Sv. If the queue is stable, then the steady state arrival rate = 
service rate. Then, for each (bottlenecked) queue, Sv is simply 1/Cv where Cv is the 
capacity of link v in terms of (average) sized packets per second. 

Note that both techniques are approximate.  In our implementation we use 1/Cv as an estimate of 
δ v. 

A2.1. Experiment topology 

We use the simple topology shown in the Figure below. It consists of two RED queues Ql and 
Q2. Both links have three sets of flows going through them. S2 goes through both the queues, 
whereas S1, S3 and S4, S5 go through only Q1 and Q2 respectively. The only bottleneck links are 
the queues Ql and Q2. We'll show results from 5 different experiments performed using ns and 
our DE solver.  
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Figure 13:  Simple network topology 

We tabulate the parameter choices in the various experiments in the following table for reference. 

 

A2.2. Experiment 1 

We first consider a symmetric case, where both RED queues have similar bandwidth capacity of 
5Mb/s. a is kept at 0.0001, pmax = 0.1. Each class of flows consists of 40 individual flows which 
start at t = 0 (200 flows in all). At time t = 75, three fourths of the flows in each class drop out 
(so there are only 10 flows in each class). At time t = 150, those flows restart. We plot the Queue 
estimate and instantaneous queue length for Queue 1 and 2 in plots (a) and (b) of the following 
Figure respectively along with our model predictions of the expected values for the same. Note 
that we are plotting the results of one ns simulation along with our solution which gives the 
expected results. As we can see, the differential equation solution tracks the simulations pretty 
well, tracking both the average queue estimate and the instantaneous queue length well. Our 
method adapts to the changing nature of the load as well. Note that our solution differs initially 
from the simulation in all cases, because we didn't implement the effect of slow start.  
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Figure 14:  Symmetric case, plots for Queue 1, Experiment 1 

  

Figure 15:  Symmetric case, plots for Queue 2, Experiment 1 

A2.3. Experiment 2 

Now we repeat the experiment in an asymmetric setting. We reduce the link capacity of the 
second queue to be 2.5Mb/s from 5Mb/s. Again we show the average queue estimate and 
instantaneous queue length along with our DE estimates for both the queues in the following 
Figures and our results match well with ns simulations for both the queues. Notice that the average 
queue estimate stays higher for Queue 2 which is correctly reflected in our DE solution. 
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Figure 16:  Asymmetric case, plots for Queue 1, Experiment 2 

 

Figure 17:  Asymmetric case, plots for Queue 2, Experiment 2 

If we focus on the middle portion of the Figures above (when only a fourth of the flows are 
active), we observe that Queue 1 exhibits more oscillations than Queue 2. The oscillations are not 
good for the network as they may result in unacceptably large queue lengths and hence a large 
variability in delays for the flows going through. Even if the mean delay may turn out to be the 
same, these oscillations add considerable jitter to the delays. If the buffer is not large enough, then 
the effect of the oscillations will be to cause buffer overflows. They also cause periodically high 
RED loss rates and affect the throughput adversely. The question is: why? The larger bandwidth 
capacity of Queue 1 certainly plays a part, reducing stability margins, however we would like to 
point out another, hidden, cause. The queue averaging module is essentially a first order low pass 
filter.  The original design goal of RED was to track the average queue size (low frequency 
signal), and to filter out bursts (high frequency signal).   The input to this filter is the 
instantaneous queue length, and the output is the average queue estimate. Asymptotically, the 
frequency response of this filter is described by the magnitude Bode plot shown in the following 
Figure, where K is inversely proportional to the sampling period. It allows frequencies smaller 
than K to pass through, while damping inputs at a frequency higher than K. In simple terms, K 
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determines the responsiveness of the filter. The higher the value of K, the faster it will respond 
to a sudden change. If we maintain a high value of K, then the AQM function starts tracking the 
instantaneous queue length closely resulting in sustained oscillations.  

 

Figure 18:  Magnitude Bode plot of first order averaging filter 

A2.4. Experiment 3 

In this experiment, all settings are unchanged except both link capacities are set at 15 Mb/s.  The 
Figure below illustrates the Queue estimates and Instantaneous Queue Lengths for Queue 1 in the 
time interval [0 75] (i.e. when all flows are active).  

 

Figure 19:   Link speed 15 Mb/s, packet size 500 bytes, Experiment 3 

We observe the presence of large oscillations. In the scenario where the link capacity was 5Mb/s 
and the packet size 500 Bytes, the effective sampling period was 8 x 10-4 (the link capacity being 
1250 packets of 500 bytes per second, and the sampling period being the inverse of the link 
capacity in packets per second).  With the increase in link capacity to 15Mb/s, the value of the 
effective sample period is reduced to 2.66 x10-4 and K becomes 3 times the earlier value. As the 
link capacity increases, the RED average queue estimate tracks the instantaneous queue length 
more closely, essentially resulting in sustained oscillations. This hidden artifact of the RED 
algorithm, the adaptive nature of the sampling period, is, in our opinion, a significant cause of 
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the "tuning problem" with RED. We can modify our DE solution system by using a static value 
for the sampling period, larger than what the link capacity would normally dictate, with the hope 
of reducing K and thereby reducing oscillations.  The figure below illustrates the behavior of the 
Queue Estimate and Instantaneous Queue Length for different values of the sampling period δ. As 
we observe, increasing the value of δ results in increasing stability, with both the average queue 
estimate as well as average instantaneous queue length settling down. However, care should be 
taken that δ not be kept too large, as increasing values of δ  result in increasing rise times of the 
average queue estimate and increasing initial overshoot of the average instantaneous queue length. 

 

Figure 20:  Behavior for different sampling periods, Experiment 3 

A2.5. Experiment 4 

Returning to the problem of tuning RED parameters, not only does the performance of the 
mechanism depend on link bandwidth, but also on the average packet size of the flows. We now 
illustrate this via experiment 4. Consider the two queue setting with the link capacities set to 
15Mb. This time we increase the packet size from 500 Bytes to 1500 Bytes. This results in a δ that 
is approximately the same as the one where link capacity was 5 Mb/s with 500 Byte packets (the 
number of packets that are being processed remains a constant). Looking at the following Figure, 
we indeed observe that the system is stabilized. 
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Figure 21:  Link speed 15 Mb/s, packet size 1500 bytes, Experiment 4 

Since the average packet size is not something network designers can control, the only hope to 
stabilize the RED algorithm is to make δ a parameter whose value is independent of link capacity 
and packet size. Implementing an algorithm whose stability is influenced by external factors (user 
packet sizes) is also not good from a security point of view. A malicious user could conceivably 
influence RED behavior by sending very small or very large packets. 

In [6] Firoiu et. al. suggest that δ should be made equal to the smallest round trip time of the 
flows going through the link. They also suggested that the δ thus selected is "good enough" and 
finer sampling won't improve things. The authors propose some guidelines for choosing RED 
parameters. We are currently investigating "tuning" RED parameter values via a different, control 
theoretic viewpoint. 

A2.6. Experiment 5 

Further, in [6] the authors also suggested that the discontinuity in the RED drop function (the 
jump from pmax to 1 at tmax) is a cause of oscillations in RED. It has been suggested that making 
the drop function continuous via the gentle- [7] should improve things in that regard. Our 
experiments show that the discontinuity is not the only cause of oscillations, and that a simple 
fix by making the drop function continuous won't remove them. To illustrate that, we repeat the 
previous experiment with pmax = l, thereby removing the discontinuity. We perform experiment 5, 
and the results are illustrated in the following Figure, showing that the oscillations persist.  
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Figure 22:  pmax=1, Experiment 5 

A quick investigation with our differential equation tool reveals that the system can be stabilized 
with a carefully selected weighting function.  However, on the downside, the system becomes 
very sluggish in its response time to changes in the load. Thus, this tradeoff between 
responsiveness and stability unfortunately cannot be avoided with the RED control mechanism. 
Thus, it is a combination of the link bandwidth, average packet size, weighting factor, sampling 
period, and load levels which make the system stable. Summarizing, our main observations with 
RED are 

• The adaptive nature of the sampling interval is harmful and can lead to oscillations. 

• The averaging algorithm needs to be modified, to make the sampling period a static value 
independent of packet sizes or arrival rates. 

• The presence of oscillations depends on many factors including packet size, link bandwidth 
and load levels. 

 

A3. CONCLUSIONS 

We developed a methodology to model and obtain (numerically) expected transient behavior of 
networks with Active Queue Management routers supporting TCP flows. We applied our tech-
niques to analyze networks where the AQM policy was RED. Our results match well with 
simulation results, and are able to scale up well to large flows. We are able to get a qualitative 
understanding of the behavior of such networks quickly with our tool. Our modeling technique 
enables us to spot a possible problem with the RED averaging mechanism, which we verify via 
simulations. This technique is quite general and can be easily extended to model and analyze 
other AQM mechanisms. A very important by-product of our formulation is that we can map the 
differential equation based TCP+AQM system into a classical control systems model. Standard 
techniques can be used to analyze various mechanisms and propose improvements to algorithms 
as well as guidelines for choosing parameters of the algorithms.  
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Appendix B:  Scalable Fluid Models and Simulations for 
Large-Scale IP Networks 

B1. INTRODUCTION 

In this Appendix we show how scalable modeling can be used to speed up "simulations".  The idea 
is to abstract the behavior of IP networks into analytical models. Solving the models numerically 
then yields performance metrics close to those of the original networks, thereby enabling an 
understanding of the key aspects of the performance of networks. The starting point is the 
differential equation based model described in Section 3.1. The differential equations represent 
the expected or mean behavior of the system. Recent results [1,6] indicate that with appropriate 
scaling the differential equations in fact represent the sample path behavior, rather than the 
expected behavior. Hence, our solutions gain in accuracy as the size of the network is increased, 
a somewhat surprising result. We solve the differential equations numerically, using the Runge-
Kutta method, and our simulations show speedups of orders of magnitude compared to packet 
level discrete event simulators such as ns. Additionally, the time-stepped nature of our solution 
mode lends itself to a particularly simple parallelization. We also perform optimization to identify 
links that are not bottlenecks to speed up the simulations. 

We also incorporate topological information in the set of differential equations in this Appendix. 
Our model developed in Section 3.1 of the report (henceforth referred to as the MGT00 model) 
defined a traffic matrix, which described the set of routers through which a particular set of flows 
traverses. However, the order in which the flows traverse the routers is ignored, and this 
information is potentially of critical importance. In Section B.2.2 we exemplify this with a 
pathological case wherein the model described in this report yields misleading results corrected by 
the refined model presented here. We also model the behavior of a number of variants of TCP 
such as SACK, Reno and New-Reno. Going beyond RED [2], we incorporate other modern 
AQM mechanisms such as AVQ [4] and PI control [3]. 

A related approach is that of [5]. In that approach, the authors exploit the model in Section 3.1 
and the ideas of [1,6] to demonstrate that the behavior of the network is invariant if the flow 
population and the link capacities are scaled together. Their approach to simulating large 
populations of flows over high capacity links is to scale down the system to a smaller number of 
flows over smaller capacity links, thereby making the simulation tractable for discrete event 
simulators. The idea is appealing (and in fact applies to our approach too), however the technique 
only explores the scaling in the population and capacity of the links. Our methodology enables 
exploring a wider dynamic range of parameters. We can solve larger networks (links and routers) 
than is possible using discrete event simulators. Preliminary results indicate that the computational 
requirement of our method grows linearly with the size of the network, whereas the growth of the 
computational requirement of discrete event simulators is super-linear in the size of the network. 

B2. FLUID MODELS OF IP NETWORKS 

In this section we present a fluid model of a network of routers serving a population of TCP 
flows. We focus on persistent TCP connections working in congestion avoidance stage.  
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B2.1. Network Model 

The network is modeled as a directed graph G = (V,E) where V is a set of routers and E is a set 
of links. Each link l has a capacity of Cl bps. In addition, associated with each link is an AQM 
policy, characterized by a probability discarding/marking function pl(t), which may depend on 
link state such as queue length. We develop models for AQMs with both marking and dropping. 
For the clarity of presentation, we focus on AQMs with packet dropping unless explicitly 
specified. The queue length of link l is ql(t), t > 0. Traffic propagation delay on link l is al. 

The network G serves a population of N classes of TCP flows. We denote by ni the number of 
flows in class i , i  = 1,... , N. TCP flows within the same class have the same characteristics, 
follow the same route and experience the same round trip propagation delays.  

B2.2. Deficiencies in the MGT00 Model 

The second equation, (4) in Section 3.1, models the average queue length behavior as the 
accumulated difference between packet arrival rate at the queue, which is approximated by 
∑i∈NlniAi(t), and the link capacity Cl. Observe that the approximation arises in replacing the 
aggregate arrival rate at the queue at time t with the aggregate sending rate of the TCP flows 
traversing that queue at t. These two quantities can significantly differ for two reasons: (1) flows 
are shaped as they traverse bottleneck queues; and (2) the arrival rate at time t at a queue is a 
function of the sending rate at a time t - d, where d is the sum of the propagation and queueing 
delays from the sender up to the queue. This delay varies from queue to queue and from flow 
class to flow class. An extreme example consists of one TCP class which traversing two identical 
RED queues with bandwidth C in tandem. The TCP traffic will be shaped at the first queue so that 
its peak arrival rate at the second queue is less than or equal, which equals the service rate of the 
second queue. Clearly, there won't be any congestion in the second queue. However, from (4), 
we will get identical equations for those two queues. Therefore the model predicts the same queue 
length and packet dropping probability for them as shown in the Figure below. 

 

Figure 23:  Importance of topology order 
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B2.3. A Topology Aware Model 

We have observed in the previous subsection the importance of accounting for the order in which a 
TCP flow traverses the links on its path. In this section we present a model that takes into 
account how flows are shaped and delayed as they traverse the network. This is achieved by 
explicitly characterizing the arrival and departure rate of each class at each queue.  The following 
expressions relate the departure and arrival process at a queue along the forward path. 

—Departure Rate When the queue length, ql (t), is zero, the departure rate at time t equals the 
arrival rate. When the queue is not empty, the service capacity is divided among the competing 
flows in proportion to their arrival rates. Thus, for each flow of class i and l, we have 

 

where dl is the queueing delay experienced by the traffic departing from l at time t. dl can be 
obtained as the solution of the following equation 

 

—Arrival Rate For each flow of class i, its arrival rate at the first queue on its route is just its 
sending rate. On any other queue, its arrival rate is its departure rate from its upstream queue after 
a time lag consisting of the link propagation delay. It is summarized in the following equation: 

 

The evolution of the system is governed by the following set of differential equations: 

(1)   Window Size. 

The window size Wi (t) of a flow of class i satisfies 

 

where Mi is the maximal TCP window size, Ri (t) and λi (t) denote the round trip time and the 
loss indication rate at time t (in other words, as seen by the sender at time t).  

 (2)  Queue Length 

For each queue l, let Nl denote the set of TCP classes traversing it. Then: 
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We repeat the tandem queue experiment in Section B2.2.  The revised topology order aware 
model gives accurate queue length results at both queues as shown in Figure 23. 

B2.4. Model Reduction 

In most operating networks, congestion only occurs at a small set of links, such as access points 
and peering points of ISPs. Most network links, especially in backbone networks, operate at low 
utilization levels. Queues at those links will be always empty and no packet will be dropped. 
Therefore there is no need to model queueing and RED behavior and maintain TCP states on 
those links. The network model can be reduced so that we only solve queueing and RED 
equations for potentially congested links and those uncongested links are transparent to all TCP 
classes except for introducing propagation delays. This can greatly reduce the computation time of 
the fluid model solver. 

B3. EXPERIMENTAL RESULTS 

We have performed extensive experiments to evaluate the accuracy and computation efficiency of 
our fluid models. We present several representative experiments here.  

For all the experiments in this section, we use TCP Newreno and RED with ECN marking as the 
AQM policy. The TCP maximal window size is set to be 128. The step-size of the fluid model 
solver is fixed at l ms.  We start with a single bottleneck topology time varying TCP workload. 
The fluid model's accuracy is tested by comparing its solution with simulation results obtained in 
ns when the network operates in both stable and unstable regions. In Section B3.2, the fluid 
model's scalability is demonstrated on a two bottleneck topology. The results show that the fluid 
model is scalable in the link bandwidth and flow populations. In addition, its accuracy improves 
as the link bandwidth scales up. In the last experiment, we test the capacity of our fluid model 
based simulation on a large topology with more than 1,000 nodes and thousands of TCP classes 
consisting up to 176,000 TCP flows. Computation results show that the fluid model approach is 
promising for simulating large IP networks. 

B3.1. Accuracy of Fluid Model 

The first experiment demonstrates the accuracy of our fluid model. As shown in the following 
Figure, there are 3 TCP classes. Each TCP class consists of 20 homogeneous TCP flows. The 
bottleneck link is between B1 and B2. It has bandwidth of 1 0Mbps and propagation delay of 
25ms. All other links in the network have bandwidth of 100Mbps and propagation delay of 
20ms. There are a total of 14 queues. After model reduction, the fluid model only needs to 
simulate 4 queues which potentially have congestion. TCP classes 1 and 2 start at time 0. After 
40 seconds, class 2 stops sending data. The number of TCP flows on the bottleneck link reduces 
from 40 to 20. The system enters an unstable region. At 70 second, both class 2 and class 3 
become active. TCP workload increases by a factor of 3. The system eventually settles around a 
stable operation point.  
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Figure 24:  Single bottleneck network with dynamic workload 

We compare the fluid model solution with results obtained from ns. Figure 25(a) plots one TCP 
connection's window sample path and the average window size we obtained from both ns and 
fluid model. The fluid model captures the average window behavior very well both when the system 
is stable and unstable. Figure 25(b) plots instantaneous queue length from ns and the average 
queue length predicted by the fluid model.  We also observe a good match, which implies the fluid 
model calculates RED packet marking probability accurately. 

 

Figure 25:  Results for single bottleneck topology 

B3.2. Model Scalability with Link Bandwidth 

The second set of experiments demonstrates the fluid model's scalability with link bandwidth and 
flow populations. We set up 3 TCP classes on a network of 8 links as in the Figure below. 

 

Figure 26:  Network with two bottlenecks 

Link bandwidth and flow population within each class are set to be proportional to a scale parameter 
K, which ranges from 1 to 100. The link between nodes 2 and 4, and the link between nodes 6 
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and 8 have bandwidths of K * 10Mbps. Other links have bandwidths of K * 100Mbps. Each TCP 
class consists of K * 40 TCP flows. In order for simulation results at different scales to be 
comparable, we make RED thresholds tmin and tmax proportional to K and its queue averaging 
weight α is inversely proportional to K. There are a total of 16 queues in the network. Our 
model reduction algorithm identifies 12 of them as uncongested that don't need to be simulated. 
For each K, we simulate the network for 100 seconds using both ns and the fluid model solver.  
The Figures below show simulation results for K = 1 and K = 10 respectively.  

 

Figure 27:  Simulation results when K=1 

 

Figure 28:  Simulation results when K=10 

Tables I and II list simulation statistics of queue lengths and throughputs, including the mean 
obtained from both ns simulation and fluid model, the standard deviation of ns results and the 
absolute difference between ns and fluid model results, ns simulation results eventually converge 
to fluid model solution as K gets larger. 
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Because the fluid model is scalable with both link bandwidth and flow population, the 
computation cost to obtain model solution is invariant to the scale parameter K. On the other 
hand, the number of packets need to be processed in ns grow as link bandwidth and number of 
flows scale up. It takes much longer for n s simulation to finish when K = 100 than K = 1. Table 
III lists pure computation costs in unit of second of ns and the fluid model, both without 
dumping data. The larger the scale, the bigger the computation savings are for the fluid model. 

 

B3.3. Experience with Large IP Networks 

In this experiment, we test our fluid model's capacity to simulate large networks. We use a 
structured network topology adapted from a baseline network model posed as a challenge to large 
network simulators by the DARPA Network Modeling and Simulation program. 

At a high level, the topology can be visualized as a ring of N nodes. Each node in the ring 
represents a campus network and is connected to its two neighbors by links with bandwidth of 9.6 
Gbps and random delays uniformly distributed in the range of 10-20ms. In addition, each node is 
connected to a randomly chosen node other than its neighbors through a chord link.  The Figure 
below on the left illustrates a ring structure generated for N = 20. 

 

Figure 29:  Topology of a large IP network 
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The campus networks at all nodes share the same topology shown in Figure 29. Each campus 
network consists of 4 sub networks: Net 0,1,2,3. All the links in campus networks have bandwidth 
of 2.5 Gbps. 

Node 0.0 in Net 0 acts as the border router and connects to border routers of other campus 
networks.  The links within Net 0 have random delays uniformly distributed in the range of 5 - 
10ms. Links connecting 0.x to other sub-networks have random delays uniformly distributed in 
the range of 1 - 5 ms. All links in Net 1, Net 2 and Net 3 have random delays of l - 2 ms. Net 1 
contains two routers and four application servers. Net 2 and Net 3 each contains four routers 
connecting to client hosts. 

The traffic consists of persistent TCP flows. From each router in Net 2 and Net 3, there are 8 TCP 
classes. Four of them are destined to servers in its neighboring campus network. The other four 
classes are destined to servers in the campus network that connects to it through a chordal link. 
Each TCP class contains K homogeneous TCP flows. 

In total, the entire network has 19N nodes, 44N queues, and 64N TCP classes. Our experiment is 
carried on a Dell Precision Workstation 530, which is configured with two Pentium IV processors 
(2.2 GHz) and 2 GB memory. However, as our program is not parallelized, only one processor is 
utilized. We fix the flow population of each TCP class at 50 and vary the number of campus 
networks on the ring from 5 to 55. Each topology is simulated for 100 seconds. Our model 
reduction algorithm identifies nearly 60% queues as uncongested. The Figure below illustrates 
simulation times that grow almost linearly with the number of campus networks. The simulation 
of the largest topology, which consists of 1,045 nodes and 176,000 TCP flows, completed after 
74 minutes and 7.2 seconds when the step-size is set to be l ms.  This simulation time can be 
reduced linearly when we use a larger step-size. 

 

Figure 30:  Computation cost as a function of N 

B4. CONCLUSIONS AND FUTURE WORKS 

In this appendix, we have developed a methodology to obtain performance metrics of large, high 
bandwidth IP networks. We started with the basic fluid model developed in Section 3.1 and 
made considerable improvements and enhancements to it. Most importantly, we made the model 
topology aware. That contribution alone is of independent interest in terms of theoretical (fluid) 
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studies of such networks, as topology awareness can play a critical part in conclusions regarding 
stability and performance as we demonstrated by a simple tandem queue example. Our solution 
methodology is computationally extremely efficient, and the scalable model enables us to obtain 
performance metrics of high bandwidth networks that are well beyond the capabilities of current 
discrete event simulators. Our technique also scales well with the size of the network, displaying a 
linear growth in computational complexity, as opposed to a super-linear one observed with 
discrete event simulators. The time stepped nature of our solution lends itself to a straightforward 
parallel implementation, pointing to another possible avenue of "simulating" large networks. 
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Appendix C:  Monitoring and Early Detection of Internet 
Worms 

C1. Introduction 

 

Currently, some organizations and security companies, such as the CERT, CAIDA, and SANS 
Institute [7] [8] [32], are monitoring the Internet and paying close attention to any abnormal traffic. 
When they observe abnormal network activities, their security experts immediately analyze 
these incidents. Given the fast-spreading nature of Internet worms and their severe damage to 
our society, it is necessary to set up a nation-scale worm-monitoring and early-warning system. 
(The US Department of Homeland Security has launched a "Cybersecurity Monitoring Project" 
in October 2003 [40]). 

A straightforward way to detect an unknown (zero-day) worm, is to use various anomaly 
detection systems. There are many well-studied methods or systems in the anomaly "intrusion 
detection" research area. For example, the "IDES" [13], "NIDES" [5] and "eBayes" [39] from 
SRI International; the anomaly intrusion detection method [15] based on "sequences of system 
calls"; the automatic model-construction intrusion detection system based on data-mining of 
audit data [24], etc. 

Anomaly intrusion-detection systems usually concentrate on detecting attacks initiated by 
hackers. In the case of Internet worm detection, we find that we can take advantage of the 
difference between a worm's propagation and a hacker's intrusion attack. A worm code exhibits 
simple attack behaviors; all computers infected by a worm send out infection traffic that has 
similar statistical characteristics. Moreover, a worm's propagation in the Internet usually follows 
some dynamic models because of its large-scale distributed infection. On the other hand, a 
hacker's intrusion attack, which is more complicated, usually targets one or a set of specific 
computers and does not follow any well-defined dynamic model in most cases. 

Based on this observation, we present a new detection methodology, "trend detection", by using 
the principle "detecting monitored traffic trend, not burst” [45].  Our "trend detection" system 
attempts to detect the dynamic trend of monitored traffic based on the fact that, at the early 
stage, a worm propagates exponentially with a constant, positive exponential rate. The "trend" 
we try to detect is the exponential growth trend of monitored traffic. 

Based on worm propagation dynamic models, we detect the presence of a worm in its early 
propagation stage using the Kalman filter estimation algorithm, which is robust to background 
noise existing in the monitored data. The Kalman filter is activated when the monitoring system 
encounters a surge of illegitimate scan activities. If the infection rate estimated by the Kalman 
filter, which is also the exponential growth rate of a worm's propagation at its early stage, 
stabilizes and oscillates slightly around a constant positive value, we claim that the illegitimate 
scan activities are mainly caused by a worm, even if the estimated worm infection rate is still 
not well converged. If the monitored traffic is caused by non-worm noise, the traffic will not have 
the exponential growth trend, and the estimated value of the infection rate would converge to 
zero or oscillate around zero. In other words, the Kalman filter is used to detect the presence of a 
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worm by detecting the trend, not the burst, of the observed illegitimate traffic. In this way, the 
noisy illegitimate traffic in the Internet we observe everyday will not cause too many false alarms 
in our detection system. 

In addition, we present a formula to predict a worm's vulnerable population size when the 
worm is still at its early propagation stage. We also present a formula to correct the bias in the 
number of infected hosts observed by a monitoring system. This bias has been mentioned in [10] 
and [29], but neither of them has presented methods to correct it. In this way, we can know 
how many computers in the global Internet are really infected based on local monitored data. 
Furthermore, we point out that in designing a worm monitoring system, the address space 
covered by a monitoring system should be as distributed as possible in order to monitor and 
detect non-uniform scan worms, especially a sequential scan worm such as Blaster. 

C2. Related Work 

In recent years, people have paid attention to the necessity of monitoring the Internet for 
malicious activities. Symantec Corp. has an "enterprise early warning solution" [1], which 
collects IDS and firewall attack data from the security systems of thousands of partners to keep 
track of the latest attack incidents. The SANS Institute set up the "Internet Storm Center" [17], 
which could gather the log data from participants' intrusion detection sensors distributed around 
the world. 

In the academic research area, Moore et al. [29] presented the concept of "network telescope" 
to use a small fraction of unused IP space for observing security incidents in the global 
Internet. Pang et al. [30] called the abnormal traffic to unused IP space as "background 
radiation", and presented detailed measurement analysis and characterization of such monitored 
traffic. From another perspective, Berk et al. [6] proposed a monitoring system by collecting 
ICMP "Destination Unreachable" messages generated by routers for packets to unused IP 
addresses. In "honeypot" research, "Honeynet" [16] is a network of honeypots to gather 
comprehensive information of attacks; "Honeyd" presented by Provos [31] is a virtual honeypot 
framework to simulate many virtual computer systems at the network level. 

The monitoring system we present in this appendix can be incorporated into the current 
monitoring systems such as the SANS "Internet Storm Center". Our contribution in this context 
is to point out the infrastructure specifically for worm monitoring, and what data should be 
collected for early detection of worms. We also emphasize the functionality of egress 
monitors, which has been overlooked in previous research. Worm monitors can be set up as 
ingress and egress filters on routers, which cover more IP space and gather more comprehensive 
information than the log data collected from intrusion detection sensors or firewalls for current 
monitoring systems. 

In the area of worm modeling, Kephart, White and Chess of IBM performed a series of studies 
from 1991 to 1993 on viral infection based on epidemiology models [21] [20] [22]. Staniford et 
al. [37] used the classical epidemic model to model the spread of Code Red right after the 
Code Red incident on July 19th, 2001; they also proposed several more vicious worms in the 
same paper. Zou et al. [46] presented a "two-factor" worm model that considered both the 
effect of human countermeasures and the effect of the congestion caused by extensive worm 
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scan traffic. Chen et al. [10] presented a discrete-time version worm model that considered the 
patching and cleaning effect during a worm's propagation. 

For a fast spreading worm such as Slammer, it is necessary to have automatic response and 
mitigation mechanisms. Moore et al. [28] discussed the effect of Internet quarantine for con-
taining the propagation of a worm. Williamson [42] proposed a general rate-limiting "throttling" 
method to greatly constrain infection traffic sent out by infected hosts while not affecting normal 
traffic. Zou et al. [47] presented a feedback dynamic quarantine system for automatic mitigation 
by borrowing two principles used in the epidemic disease control in the real world: 
"preemptive quarantine" and "feedback adjustment." Staniford [36] presented automatic worm 
quarantine for enterprise networks by using "CouterMalice" devices to separate an enterprise 
network into many isolated subnetworks. Weaver et al. [41] further improved the CounterMalice 
quarantine by designing hardware-centered quarantine algorithms. Jung et al. [18] [19] proposed a 
"threshold random walk" algorithm to quickly detect and block worm scans based on the 
excessive illegal scans sent out by worm-infected hosts. "EarlyBird" in [35] and "Autograph" in 
[23] detect and block worm spreading through identifying the common characteristics, such as a 
common bit-string, among all infection network traffic of a worm. Wu et al. [43] proposed 
a victim counter-based detection algorithm that tracks the increased rate of new infected 
hosts. 

Our early detection system tries to detect the presence of a worm in the global Internet. For 
worm detection in local networks, Staniford-Chen et al. [38] presented "GrIDS", which can 
detect worm-infected hosts in a local network through building the worm's infection graph 
(based on monitored infection traffic between all hosts); Dagon et al. [11] presented a 
"honeystat" worm detection method by correlating infection statistics provided by local 
honeypots when a worm tries to infect them. The CounterMalice quarantine device [36] also 
tries to detect infected hosts in local enterprise networks. 

We assume that the IP infrastructure is the current IPv4. If IPv6 replaces IPv4, the vast IP space 
of the IPv6 would make it futile for a worm to propagate through blindly IP scanning [50]. 
However, we believe IPv6 will not replace IPv4 in the near future, and worms will continue to 
use various random scan techniques to spread in the Internet. 

C3. Worm Propagation Model 

A promising approach for modeling and evaluating the behavior of malware is the use of fluid 
models. Fluid models are appropriate for a system that consists of a large number of vulnerable 
hosts, which is the case for Internet-scale worm propagation modeling. In epidemiology research, 
the simple epidemic model [12] assumes that each host resides in one of two states: susceptible or 
infected. The model further assumes that once infected by a virus or a worm, a host remains in 
the infectious state forever. Thus any host has only one possible state transition: susceptible → 
infected. The simple epidemic model for a finite population is 
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where It is the number of infected hosts at time t; N is the size of vulnerable population before 
any of them is infected; and β is called the pairwise rate of infection in epidemic studies [12]. At t 
= 0, I0 hosts are initially infected while the remaining N - h hosts are susceptible. 

This model captures the basic mechanism of the propagation of a random-scan worm, especially 
for the initial stage of a worm's propagation when the effect of human counteractions and 
network congestion is ignorable [46]. A sequential-scan worm (such as Blaster), or a subnet-
scan worm (such as Code Red II), propagates differently from a uniform-scan worm. 
However, through simulation and analysis, [48] showed that the propagation of these worms still 
closely follows the epidemic model (1). 

The discrete-time version of the simple epidemic model (1) can be written as 

 

where 

 

We call α the infection rate because it is the average number of vulnerable hosts that can be 
infected per unit of time by one infected host during the early stage of a worm’s propagation. 

The epidemic model (1) has its limitations. First, the model assumes that all hosts can directly 
contact each other, which means it is not suitable for a topological worm (such as Morris [33]) or 
a mass-mailing email virus [49]. Second, if worm-infected hosts collaborate their infection 
efforts, such as the divide-and-conquer approach or the permutation scan used by the Warhol 
worm [37], then the worm's propagation will deviate from the epidemic model. 

For the epidemic model (1), The following Figure shows the dynamics of It as time goes on 
for one set of parameters.  We can roughly partition a worm's propagation into three phases: 
the slow start phase, the fast spread phase, and the slow finish phase. During the slow start 
phase, since It «N, the number of infected hosts increases exponentially (model (1) becomes 
dIt/dt « βNIt). After many hosts are infected and then participate in infecting others, the worm 
enters the fast spread phase where vulnerable hosts are infected at a fast, near linear speed. When 
most vulnerable computers have been infected, the worm enters the slow finish phase because the 
few leftover vulnerable computers are difficult for the worm to search out.  
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Figure 31:  Worm propagation model 

C4. Monitoring System 

In this section, we propose the architecture of a worm monitoring system. The monitoring 
system aims to provide comprehensive observation data on a worm's activities for the early 
detection of the worm. The monitoring system consists of a Malware Warning Center (MWC) 
and distributed monitors as shown in the Figure below. 

 

Figure 32:  A generic worm monitoring system 

A. Monitoring System Architecture 

There are two types of monitors: ingress scan monitors and egress scan monitors. Ingress scan 
monitors are located on gateways or border routers of local networks. They can be the ingress 
filters on border routers of the local networks, or separated passive network monitors. The goal 
of an ingress scan monitor is to monitor scan traffic coming into a local network by logging 
incoming traffic to unused local IP addresses. For management reasons, local network 
administrators know how addresses inside their networks are allocated; it is relatively easy for 
them to set up the ingress scan monitor on routers in their local networks. For example, during 
the Code Red incident on July 19th 2002, a "/8" network at UCSD and two "/16" networks at 
Lawrence Berkeley Laboratory were used to collect Code Red scan traffic. All port 80 TCP SYN 
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packets coming in to nonexistent IP addresses in these networks were considered to be Code 
Red scans [27]. 

An egress scan monitor is located at the egress point of a local network. It can be set up as a 
part of the egress filter on the routers of a local network. The goal of an egress scan monitor is 
to monitor the outgoing traffic from a network to infer the scan behavior of a potential worm. 

Ingress scan monitors listen to the global traffic in the Internet; they are sensors for global 
worm incidents (called "network telescope" in [29]). However, it is difficult to determine the 
behavior of each individual infected host from the data collected by ingress scan monitors 
because such monitors can only capture a small fraction of scans sent out by an infected host. 
On the other hand, if a computer inside a local network is infected, the egress scan monitor on 
this network's routers can observe most of the scans sent out by the compromised computer. 
Therefore, an egress scan monitor is good at observing a worm's scan rate and scan distribution, 
e.g., uniform scan (such as Code Red), or subnet scan (such as Code Red II and Sasser), or 
sequential scan (such as Blaster). 

In order to provide early warning in real-time, distributed monitors are required to send 
observation data to the MWC continuously without significant delay, even when a worm's scan 
traffic has caused congestion to the Internet. For this reason, a tree-like hierarchy of data 
mixers can be set up between monitors and MWC: MWC is the root; the leaves of the tree are 
monitors. The monitors nearby a data mixer send observed data to the data mixer. After fusing 
the data together, the data mixer passes the data to a higher level data mixer or directly to MWC. 
An example of data fusion is the removal of repetitive IP addresses from the list of infected hosts. 
However, the tree structure of data mixers creates single points of failure, thus there is a trade-off 
in designing this hierarchical structure. 

B. Location of Distributed Monitors 

Ingress scan monitors on a local network may need to be placed on several routers instead of only 
on the border router because the border router may not know the usage of all IP addresses of this 
local network. In addition, since worms might choose different destination addresses by using 
different preferences, such as subnet scanning, we need to use distributed address spaces with 
different sizes and characteristics to ensure proper coverage. Later on, we show that for 
monitoring non-uniform scan worms such as Blaster, the IP space covered by a monitoring 
system should be as distributed as possible. 

For egress scan monitors, worms on different infected computers may exhibit different scan 
behaviors. For example, Slammer's scan rate is constrained by an infected computer's bandwidth 
[26]. Therefore, we need to set up distributed egress filters to record the scan behaviors of many 
infected hosts at different locations and in different network environments. In this way, the 
monitoring system could obtain a comprehensive view of the behaviors of a worm. For example, 
it can get a better observation of the average number of scans an infected host sends out per unit 
of time. 
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C5. Data Collection and Bias Correction 
After setting up a monitoring system, we need to determine what kind of data should be 
collected. The main task for an egress scan monitor is to determine the behaviors of a worm, 
such as the worm's average scan rate and scan distribution. Denote η as the "average worm 
scan rate", which is the average number of scans sent out by an infected host in a unit time. 
Thus in a monitoring interval ∆, an infected host sends out on average η∆ scans. The ingress 
scan monitors record two types of data: the number of scans they receive, and the source IP 
addresses of computers that send scans to them. 

If all monitors send observation data to MWC once in every monitoring interval, then MWC 
obtains the following observation data at each discrete time epoch t, t = 1,2,,,,: 

(1)  The number of scans monitored in a monitoring interval from discrete time (t - 1) to t, 
denoted by Zt, 

(2)  The cumulative number of infected hosts observed by the discrete time t, denoted by Ct 

(3)  A worm's scan distribution, 

(4)  A worm's average scan rate η. 

Let us first focus on worms that uniformly scan the Internet. Let p denote the probability that a 
worm's scan is monitored by a monitoring system. If ingress scan monitors cover m IP 
addresses, then a worm's scan has the probability p = m/232 to hit the monitoring system. We 
assume that in the discrete-time model all changes happen right before the discrete time epoch t, 
then we have 

 

In order to detect non-uniform scan worms, it is important to observe a worm's scan distribution 
since it affects how we should use monitored data in our early detection. For example, if a 
subnet-scan worm has a higher preference in scanning local "/16" IP space, we can remove 
these "/16" local scans from monitored data Zt in order to observe the worm's global scan trend. 
For a sequential scan worm, we can first apply a low-pass filter on monitored data Zt to remove 
its excessive high-frequency noise before using the Kalman filter for early detection. 

An egress scan monitor can observe the scan rates of all its internal infected hosts. If egress 
scan monitors cover many infected hosts, and if the scan rate of the worm does not vary too 
much, then we can obtain an accurate estimation of η, the worm's average scan rate. 
However, it is hard for the monitoring system to obtain an accurate estimate of η for a 
bandwidth-limited worm, such as Slammer or Witty, since the worm's scan rate could vary over 
several orders of magnitude [26] [34].  

In [45] we derive the following estimate for the number of infected hosts at time, ˆ I t  

ˆ I t =
Ct +1 − (1− p)η∆ Ct

1− (1− p)η∆  
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Expressions for the error are also given in [45]. The following Figure shows how well this 
estimator performs when the monitored IP address space is 214 in the case of a Code Red style 
worm. 

 

Figure 33. Estimate of number of infected hosts. 

C6. Early Detection and Estimation of Worm Virulence 
We present estimation methods based on recursive filtering algorithms (e.g., Kalman filters 
[4]) for stochastic dynamic systems. At MWC, we recursively estimate the parameter α based 
on observation data at each monitoring interval in order to detect a worm at its early 
propagation stage. 

Let y1, y2, · · · , yt, be the measurement data used by a Kalman filter estimation algorithm. 
Suppose the observations have one monitoring interval delay: 

yt = δIt−1 + wt, 

where wt is the observation error. δ is a constant ratio: if we use Zt as yt, then δ = η∆p; if we 
use ˆ I t −1 derived from Ct by the bias correction, then δ = 1. We use the following recurrence 
for It 

lnIt = t∆α + lnI0, 

We take as the state of the Kalman filter Xt =
∆α
K

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . Now Ht = [ t-t0 1] and the system is 

described by 
Xt = Xt−1

ln yt = Ht Xt + vt
n

⎧ 
⎨ 
⎩ 

 

The Kalman filter estimating Xt is 
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Ht = [t − t0 1]
Kt = Pt−1Ht

r (HtPt−1Ht
r +1/τ t )

Pt = (I − KtHt )Pt−1
ˆ X t = ˆ X t−1 + Kt[ln yt − Ht Xt−1]

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 

 
where τt is the weight of the t-th error term in the Least Square (LS) estimation algorithm [25]. 
We can use it to adjust whether our estimation should rely more on recently monitored data (τt 
increases as t increases) or equally on all monitored data (τt is a constant). 
 
For a uniform-scan worm, we present an effective way to predict the population size N based on 
the observation data η and the estimate α. In this way, we can know how many computers are 
vulnerable in the Internet when a worm is still in its slow start phase. A uniform-scan worm sends 
out on average η scans per unit time; each scan has the probability N/232 to hit a host in the 
population under consideration. Hence, at the beginning when most hosts in the vulnerable 
population N are still vulnerable, a worm can infect on average ηN/232 hosts per unit time. (The 
probability of two scans sent out by a single infected host hitting the same target is negligible). 
From the definition of infection rate α, we have α = ηN/232. Therefore, the population N is 

 

where the average worm scan rate η is directly estimated from monitored data generated by 
egress scan monitors. When we use one of the Kalman filters above to estimate α, we can use the 
equation above to estimate N along with the Kalman filter estimation. In this way, the 
estimation of N has similar convergence properties to the estimation of α from the Kalman 
filter. 

MWC collects and aggregates reports of worm scans from all distributed monitors once in every 
monitoring interval in real-time. For each TCP or UDP port, MWC has an alarm threshold for 
monitored illegitimate scan traffic Zt. The observed number of scans Zt, which contains non-
worm noise, is below this threshold when there is no global spreading worm. This threshold can 
be chosen based on observations on normal days when no wide-spreading worm exists in the 
Internet. If the monitored scan traffic is over the alarm threshold for several consecutive 
monitoring intervals, e.g., Zt is over the threshold for three consecutive times, a Kalman filter 
will be activated. Then MWC begins to record Ct and calculates the average worm scan rate η 
from the reports of egress scan monitors. Because Ct is a cumulative observation data that could 
cumulate all non-worm noise, MWC begins to record data Ct only after the Kalman filter is 
activated. The Kalman filter can either use Ct or Zt to estimate all the parameters of a worm at 
discrete time t (t = 1,2,3, …). 

The recursive estimation will continue until the estimated value of α shows a trend: if the 
estimate stabilizes and oscillates slightly around a positive constant value, we have detected the 
presence of a worm; if the estimate converges to or oscillates around zero, we believe the surge 
of illegitimate monitored traffic is caused by non-worm noise. 
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C7. Simulation Experiments 
In this section, we describe the extensive simulations we used to study: (1) how a random-scan 
worm and a sequential-scan worm propagate; and (2) the performance of our Kalman filter-based 
early detection system. In addition, we show that the address space covered by the worm 
monitoring system should be as distributed as possible in order to better monitor non-uniform 
scan worms, especially a sequential-scan worm such as Blaster. 

In our simulation experiments, we do not simply use the epidemic model (1) to numerically 
generate a worm's propagation curve. Instead, we have programmed discrete-time worm 
propagation simulators, which can be downloaded from [44], to simulate the detailed scanning 
behaviors of scans sent out by each infected host during each discrete time interval. In this 
way, we can accurately simulate the detailed propagation of a worm that uses any kind of 
scanning strategy. 

A. Simulation Settings 

We have simulated Code Red [2], SQL Slammer [26], and a sequential-scan worm similar to 
Blaster [3]. First, we explain how we choose the simulation parameters. In the case of Code 
Red, more than 359,000 Code Red infected hosts were observed on July 19th 2001 by 
CAIDA [27]. Thus in our simulation we set the Code Red vulnerable population N = 
360,000. Staniford et al. [37] used a different format but the same epidemic model as (1) to 
model Code Red, where their model's parameter K is actually K = βN = α [46]. They 
determined that K = 1.8 for the time scale of one hour. Therefore, for the discrete time unit of one 
minute in our simulation, α = 1.8/60 = 0.03. From (32) we can reversely derive η = 232α/N = 
358 per minute, i.e., Code Red sends out on average about 358 scans per minute per infected 
host. 

Because different infected hosts have different scan rates, we assume that each infected host 
has a constant scan rate x, a rate that is independently predetermined by a normal distribution 
N(η,σ2), where σ = 100 (the scan rate x is bounded by x ≥ 1). In our simulation, ingress scan 
monitors cover 220 IP space. We also assume I0 = 10 at the beginning. 

Because of the sequential scan used by Blaster, people do not have a good estimation of how 
many computers were really infected by Blaster within the days following the worm's outbreak. 
We will explain the reason for this later in our experiments (shown in Fig. 10). In addition, there is 
no authoritative study of this worm's scan rate η. Therefore, in this appendix we simulate and 
study a sequential-scan worm that has the same "local preference" as Blaster [3], which is called 
a "Blaster-like" worm in this appendix. Since we want to understand how the sequential scan 
affects a worm's propagation and our early detection system, we give this Blaster-like worm the 
same parameters as Code Red in order to compare it with Code Red, i.e., we set the Blaster-
like worm to have N = 360,000, η= 358 per minute. Each worm's scan rate x follows normal 
distribution N(358, 1002) with the bound x≥1, and I0 = 10 at the beginning. 

For a uniform-scan worm, such as Code Red, the distribution of vulnerable hosts in the Internet 
will not affect the worm's propagation. However, this distribution may affect the propagation of 
Blaster [48] because of its sequential scan. Since we do not know the true distribution of 
vulnerable hosts in the Internet, in our simulations of the Blaster-like worm, we assume 
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vulnerable hosts are uniformly distributed in the IP space defined by BGP routing prefixes, 
which is less than 30% of the entire IPv4 space [50]. 

We should choose an appropriate monitoring interval ∆ in the Kalman filter estimation. ∆ 
should not be too big in order to obtain enough sampling points in a worm's slow start phase for 
the Kalman filter. On the other hand, a too small monitoring interval puts more pressure on the 
MWC data collection, and introduces more monitoring statistical error wt in (17) (because we 
can observe fewer worm scans in a smaller monitoring interval). In the discrete-time 
simulations in this appendix, the monitoring interval ∆ is set to be one minute for Code Red 
and the Blaster-like worm. SQL Slammer propagates much faster and can finish infection in 
about 10 minutes [26]. Hence its monitoring interval should be much shorter in order to catch 
the dynamics of this worm. For this reason, the monitoring interval for Slammer is set to be one 
or several seconds. 

B. Background Noise Consideration 

We need to consider background non-worm noise in our simulations. Fortunately, Goldsmith 
[14] provided simple data of the background noise for Code Red activities monitored on a 
"/16" network (covers 216 IP addresses). He recorded TCP port 80 SYN requests from Internet 
hosts to any unused IP addresses inside his local network. Such data are exactly the monitored 
data collected by ingress scan monitors in our proposed monitoring system. His monitored data 
showed that the background noise was small compared to Code Red traffic and the noise did not 
vary much. If we use normal distribution to model the background noise, then for each hour the 
number of noise scans follows N(110.5,302) and the number of source hosts that send noise 
follows N(17.4, 3.32). 

We try to hold the statistics of the observed background noise in our experiments: we monitor 
220 IP space, which is 16 times larger than what Goldsmith monitored, so the number of noise 
scans or noise sources should be enlarged by 16 times. We use one minute instead of one 
hour as the monitoring interval, thus we should decrease the number of noise scans or noise 
sources by 60. In this way, in our simulations of Code Red and the Blaster-like worm, the noise 
added into the observation data at each monitoring interval follows N(29.5,82) for Zt and 
N(4.63,0.8932) for Ct. Of course, this kind of extension of noise is very rough, but it is the best 
we can do based on the data available. Currently, we are trying to obtain detailed log data on 
previous worms from other researchers in order to have more realistic experiments. 

In the simulation experiments, the alarm threshold for Zt is set to be two times as large as the 
mean value of the background noise, i.e., the alarm threshold is 29.5 x 2 = 59. The Kalman 
filter we use in early detection will be activated when the monitored scan traffic Zt is over the 
alarm threshold for three consecutive monitoring intervals. In this way, the Kalman filter will not 
be frequently activated by the surge of background noise traffic in the normal days. 

C. Code Red Simulation and Early Detection 

We simulate Code Red propagation for 100 simulation runs with the same input parameters but 
different seeds for random number generator. The following Figure shows the number of infected 
hosts as a function of time for three cases: the average value, the 95th percentile, and the 5th 
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percentile. The curve of 95th percentile means that in 95 out of our 100 simulation runs, Code 
Red propagates no faster than this curve represents. 

 

Figure 34:  Code Red propagation and its variability (100 simulation runs) 

This figure shows that a worm propagates slightly differently in different sample runs. The 
propagation speed difference is mainly caused by a worm's spreading at the beginning, when only 
several infected hosts scan and attempt to infect others. In fact, we have chosen I0 = 1 and run 
Code Red propagation for another 100 simulation runs. It shows that Code Red in the I0 = 1 
case propagates more variously than the one shown in the figure above, where I0 = 10. 

For one simulation run of Code Red propagation, The Figure below shows the estimation of the 
worm infection rate α as a function of time by using three Kalman filters based on three discrete-
time models: epidemic model, AR exponential model, and transformed linear model, 
respectively. This figure shows the estimates by using the processed monitored data Zt after 
subtracting the average value of background noise from it. We can obtain the average value 
of noise based on the observations before activating the Kalman filter. We can use either the 
monitored data Zt or the data Ct after bias correction to estimate α for Code Red. They provide 
the similar estimation results [45]. Later, when we study the early detection of the Blaster-like 
worm, because of its non-uniform scan, we cannot use the bias correction for the monitored data 
Ct and have to rely on the monitored data Zt in our early detection. Therefore, in this appendix 
we will only discuss early detection by using the monitored data Zt. 

In this simulation run, Zt at time 126, 127, and 128 minutes are over the alarm threshold 
59, thus the Kalman filter is activated at time 128 minutes. The Figure below shows that the 
Kalman filter estimation based on the transformed linear model provides a much better estimation 
result than the other two because the noise v'{ introduced by the transformed linear model (7) is 
much smaller than the noise νt and v[ introduced by the other two models. 
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Figure 35:  Kalman  filter estimation of Code Red infection rate (for one simulation run) 

In the Code Red simulation run shown in the Figure above, the worm infects 0.3% of 
vulnerable computers in the Internet at time 157 minutes. If we use the transformed linear 
model in our early detection, Plot (c) in the Figure above shows that the estimate of a has already 
stabilized at a positive constant value by that time. Therefore, we can detect the presence of 
Code Red when it has only infected 0.3% of all vulnerable population in the Internet. For the 
remaining 99 Code Red simulation runs, we have done such early detection by using Kalman 
filters and have achieved the similar early detection performance. In [45], we have shown that 
the early detection system can achieve a similar detection performance — detect a worm 
when it infects a similar fraction of the vulnerable population — no matter whether this worm 
propagates faster or slower in those 100 simulation runs. 

The Kalman filter based on epidemic model is still useful since it is able to estimate worm 
infection rate α during the whole propagation period of a worm. On the other hand, because 
the transformed linear model is derived from the exponential-growth model (7), its Kalman filter 
will underestimate α when the worm enters its "fast spread phase". The Figure below shows the 
estimation results from these two Kalman filters before the worm infects 80% of vulnerable 
hosts at time 400 minutes. It shows that we should use these two Kalman filters together in the 
early detection of a worm. 

 

Figure 36:  Long-term Kalman filter estimation 

We predict the vulnerable population size N at each discrete time when we update the estimate 
of α from Kalman filters. The following Figure shows the estimated value of N as a function of 
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time based on the Kalman filters of transformed linear model and epidemic model, respectively. 
Because the estimate of N is proportional to the estimate of α, this figure has the same pattern as 
the Figure above. In a real implementation, we should combine both estimation curves shown in 
the Figure below to predict the vulnerable population size N. 

 

Figure 37:  Estimate of the vulnerable population size N of Code Red 

Because Slammer propagates in the same way as Code Red — by uniformly scanning the 
Internet — its propagation and its early detection are very similar to the methods used for 
detecting Code Red [45]. (We choose η = 4000/sec as explained in [26] and η = 1 second). 
Therefore, we do not repeatedly show the early detection of Slammer here. 

D. Blaster-like Worm Simulation and Early Detection 

Each Blaster infected host scans the entire IP space sequentially from a selected starting point. To 
select this starting IP address, each worm copy has a 40% probability to choose the first address 
of its "Class C"-size subnet (x.x.x.0), and a 60% probability to choose a completely random IP 
address [3]. In our simulations, we let the Blaster-like worm to have the same local preference in 
selecting its starting point. 

Since we select the same parameters for simulations of both Code Red and the Blaster-like worm, 
we can compare them to study how the sequential scan affects a worm's propagation. Again, we 
run the simulation of the Blaster-like worm for 100 simulation runs. The Figure below 
shows the 95th percentile and 5th percentile of the worm's propagation compared with the 
previous Code Red simulations shown earlier. 
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Figure 38:  Worm propagation comparison between Code Red and Blaster-like worm 

Even though the simple epidemic model (1) is derived based on uniform scanning, our 
simulation experiments show that the Blaster-like worm can still be accurately modeled by the 
simple epidemic model (1), and thus the worm can be modeled by the three discrete-time models 
presented in this appendix. This is consistent with a conclusion in [48], which shows that a 
sequential-scan worm has the same propagation dynamics as a uniform-scan worm when the 
vulnerable hosts are uniformly distributed. 

However, we should keep in mind that a worm's propagation is in fact a stochastic process; the 
epidemic model (1) is accurate only when both the number of vulnerable hosts and the number 
of infected hosts are relatively large. For example, no ordinary differential equation models are 
suitable to model the very end of a worm's propagation when the worm finishes infecting the last 
several vulnerable hosts, which can only be modeled accurately by a stochastic model. Since we 
study an Internet-scale worm's propagation that involves hundreds of thousands or even millions 
of computers, the epidemic model (1) is a good abstract model for modeling a worm's dynamics 
except the very beginning and the very end of the worm's propagation. 

The following Figure shows that the Blaster-like worm propagates slower than Code Red. Zou et 
al. [48] pointed out that this is because the Blaster-like worm selects its starting scanning point 
with a local preference, not because of its sequential scan mechanism. 

 

Figure 39:  Blaster-like worm propagation and its monitored data 
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Because of its sequential scan, when monitoring the Blaster-like worm, we cannot let the 
monitoring system cover only one big block of IP address space — such a monitoring system 
can only observe a very small fraction of infected hosts in the Internet. For example, if a 
sequential scan worm has the same fast scan rate η = 4000 per second as Slammer [26], each 
infected host will take 232/η = 12.4 days to finish scanning the entire IPv4 space. Therefore, 
most hosts infected by the Blaster-like worm will take days before their scans hit the big block IP 
address space monitored in such a monitoring system. 

For this reason, a good worm monitoring system should cover as distributed as possible an IP 
address space in the Internet. We simulate two monitoring systems. Both monitoring systems 
cover the same 220 IP addresses (the same as the monitoring system in previous Code Red study), 
but they consist of a different number of monitored IP blocks: one monitors 16 "/16" networks; 
the other monitors 1024 "/22" networks. All monitored address blocks in a monitoring system are 
evenly distributed in the entire IPv4 space. We call these two monitoring systems as "the 16-
block monitoring system" and "the 1024-block monitoring system," respectively. 

The previous Figure shows one simulation run of the Blaster-like worm. Plot (a) in that Figure 
shows the number of infected hosts I(t) in the entire Internet as a function of time t. It also shows 
the cumulative number of observed infected hosts, C(t), from both monitoring systems. Because 
observed C(t) is very small compared with I(t), we plot this figure by taking logarithmically on 
the Y-axis. 

Plot (a) shows that, during the worm's propagation period, we can observe less than 0.1% of 
infected hosts in the Internet from the 16-block monitoring system. Even if we use the 1024-block 
monitoring system, we can only observe less than 4% of infected hosts in the Internet during the 
worm's propagation period. This is the reason why researchers have not derived an accurate 
estimate of how many computers were really infected by the Blaster-like worm. 

Plot (b) in that Figure shows the monitored data Z(t), the number of worm scans observed 
within each minute. Compared to the 16-block monitoring system, The 1024-block monitoring 
system gives noisier observation Z(t). This is because as time goes on, an infected host 
will enter or leave one of the monitored IP blocks. It happens more frequently in the 1024-
block monitoring system than in the 16-block monitoring system. 

Although noisier than the data from the 16-block monitoring system, the monitored data from 
the 1024-block monitoring system represents more accurately the propagation of a sequential-
scan worm. From the monitored data sets, we want to know the worm's propagation pattern in the 
global Internet, i.e., the curve of It shown in Plot (b). Such a growth pattern of It is a low 
frequency signal compared with the high frequency noise presented in the observed data Zt. 
Therefore, we can use a low-pass filter to filter out high frequency noise from Zt without 
changing the worm's propagation pattern. Plot (c) in that Figure shows the observation data Zt 
after being filtered by a first-order low-pass filter. This Figure clearly shows that the monitored 
data from the 1024-block monitoring system can better represent the worm's propagation pattern 
in the entire Internet. 

Based on the filtered monitored data Zt from the 1024-block monitoring system as shown in Plot 
(c), we run the Kalman filter estimation based on the transformed linear model. The estimated 
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value of α is shown in the following Figure as a function of time. In this simulation run, the 
Blaster-like worm infects 1.3% of vulnerable population at time 240 minutes, by which time 
the estimate of α has already stabilized and oscillated slightly around a positive, constant value. 
Hence our early detection system can detect the Blaster-like worm before it infects 1.3% of 
vulnerable population in the Internet. 

 

Figure 40:  Kalman  filter estimation of worm infection rate for Blaster-like worm based on transformed 
linear model 

Worm propagation in other simulation runs of the Blaster-like worm gives results similar to 
those shown in the previous two Figures. On occasion the 16-block monitoring system provides 
as good observation as the 1024-block monitoring system. However, the 1024-block monitoring 
system always provides stable and good observations, while the 16-block monitoring system 
provides poor observations in many instances. 

C8. Discussion and Future Work 
We have used the simple epidemic model and the exponential model for the estimation and 
prediction. While these models give good results so far, we need to develop more detailed 
models to reflect a future worm's dynamics. For example, if a worm spreads through a topology, 
or spreads by exploiting multiple vulnerabilities, or is a meta-server worm, then its propagation 
may not follow the models used here. 

The monitoring interval ∆ is an important parameter in the system design. For a slow-spreading 
worm, it could be set to be long, but for a fast-spreading worm such as Slammer, the time 
interval should be in the order of seconds to catch up with the worm's dynamics. How can we 
select the appropriate ∆ before we know a worm's presence and its speed? We need to do 
further research on designing a recursive estimation algorithm that uses adaptive sampling rate. 
Currently, one way we contemplate is to tag the time stamp with each observed scan. Then at 
MWC, several estimators run in parallel with different monitoring intervals. From the tagged 
time stamp the correct Ct or Zt for every estimator can easily be restored. 

It could be useful to develop distributed estimation algorithms so as to reduce the latency and 
traffic for the report to a central server. Distributed estimators may also reduce the impact of 
noise when a few monitors experience larger than normal noise-to-signal ratios. In addition, we 
want to use a continuous version of the Kalman filter. This approach would reduce the 
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significance of the monitoring interval selection, and would work nicely with the distributed 
estimation setting. 

The worm detection method presented here assumes that only worm scans can cause 
exponentially increased traffic to monitors, while other background scan noise cannot. We 
believe this is a reasonable assumption. If we want to further improve the detection accuracy, 
however, we can add some other rule sets in the detection system. For example, in order to 
distinguish a worm attack from a DDoS attack, we can exploit the differences between them: a 
DDoS attack has one or several targets while a worm's propagation has no specific target. 

We have presented several major issues in designing an Internet Malware Warning Center. 
However, there are still many challenges in building such a system, such as cooperation 
mechanism among a large number of communities; the privacy concern in monitored data 
sharing, and the robustness of the monitoring system itself towards attacks by worms or 
hackers.  

C9. Conclusions 
We propose a monitoring and early detection system for Internet worms to provide an accurate 
triggering signal for mitigation mechanisms in the early stage of a future worm. Such a system 
is needed in view of the propagation scale and the speed of the past worms. We have been 
lucky that the previous worms have not been very malicious; the same cannot be said for the 
future worms. Based on the idea of "detecting the trend, not the burst” of monitored illegitimate 
scan traffic, we present a "trend detection" methodology to detect the presence of a worm in its 
early propagation stage by using the Kalman filter and worm propagation models. Our analysis 
and simulation studies indicate that such a system is feasible, and the "trend detection" 
methodology poses many interesting research issues.  
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Appendix D:  Network Resilience: Exploring Cascading 
Failures within BGP  

D1. Introduction 

The Internet is a large collection of Autonomous Systems (AS). There are various glues that hold 
together this massive system, but the most important of these is the routing infrastructure. The 
Internet routing protocols maintain connectivity between and within AS's, and are designed to 
automatically reconfigure and recompute routing tables when they detect a link failure. This 
computation starts locally around the failure point, and then the information propagates through 
the Internet. While telephone networks recover from failures on the order of milliseconds [2], the 
Internet routing table convergence has been observed to take a much longer time [3]; it is not 
uncommon to have tens of minutes of downtime before recovery has taken place. Although 
empirical observations of the dynamics have been made in [4, 5], formal models of the process 
are not very common (there has been recent work on an analytical study of Route Flap Damping 
[6], and another study of BGP in congested networks [7]). There are other models of BGP that 
verify correctness, satisfiability etc. [8, 9, 10]; here we explore the dynamical behavior of BGP. 
We develop and analyze models in this paper that reflect the behavior of the protocols. Our 
analysis confirms the observations made in [1], that it is indeed possible to have cascading 
failures in systems like the BGP routing infrastructure. Our results indicate the presence of phase 
transitions in these systems, and the presence and intensity of the phase transitions are strongly 
dependent on system parameters. We use the term phase transitions in the sense used by Erdos and 
Renyi in their work on random graphs, that is "an abrupt change in a global system property". The 
phase transition is to be interpreted as a sharp threshold rather than the definition used in statistical 
mechanics. In our analysis, we observe that the propensity for phase transitions increases as clique 
size increases, and additionally also increases as the processing capacity of the routers decreases. 

D2. Background 

An interesting vulnerability of BGP came to light in July and September of 2001. This was the 
incident where CODE RED and Nimda viruses disrupted the Internet routing infrastructure and 
caused widely reported BGP storms [1]. We briefly describe the incident, discuss possible 
explanations and then elucidate how modeling can help in this scenario. A direct quote from [1] 
is reproduced below 

On July 19th, we observed an exponentially growing eight-fold increase in the ad-
vertisement rate, over a period of about eight hours (all times are in GMT; subtract 4 
hours for EDT). This BGP surge faded over the same time scale as it arrived. When 
one considers the conventional wisdom about BGP convergence times (seconds to 
minutes), it is more than a little disturbing to see a fundamental quantity like BGP 
advertisement rate exhibiting exponential growth for eight hours. 

This event coincided with the spread of the CODE RED virus on the Internet. Then again, on 
September 18th, the day the NIMDA virus started to spread, the following was observed: 
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On Tuesday, September 18, simultaneous with the onset of the propagation phase of 
the Nimda worm, we observed another BGP storm. This one came on faster, rode the 
trend higher, and then, just as mysteriously, turned itself off, though much more slowly. 
Over a period of roughly two hours, starting at about 13:00 GMT (9am EDT), rrc00 
aggregate BGP announcement rates exponentially ramped up by a factor of 25, from 
400 per minute to 10,000 per minute, with sustained "gusts” of more than 200,000 per 
minute. The advertisement rate then decayed gradually over many days, reaching 
pre-Nimda levels by September 24th. 

These two events clearly demonstrated that an application layer event (the virus attack) caused 
problems at lower layers of the Internet infrastructure. What caused this unexpected event? 
Briefly, [1] hypothesized the following chain of events 

• The viruses started random IP port scanning 

• Most of these random IP addresses were not in the cached entries of the routing table, 
causing.... 

• Frequent cache misses, and, 

• In the case of invalid IP addresses, generation of ICMP (router error) messages. 

• Both of the above causes led to router CPU overload, causing routers to crash 

• Router failure led to withdrawal announcements by the peers, generating a high level of 
advertisement traffic. 

• When the router came back on, it required a full state update from its peers, creating a 
large spike in the load of its peers who provided the state dump 

• Once the restarted router obtained all the dumps, it dumped its full state to all its peers, 
creating another spike in the load.. 

• Frequent full state dumps led to more CPU overload, leading to more crashes, and the 
propagation of the cycle... 

An immediate question of concern is: how self-sustaining is this process? On the two particular 
days, the BGP storms lasted for hours, causing major disruptions on the Internet. Although the 
there is some debate ranging over the findings of [1], e.g. [11], our interest is answering the 
question if this process (or something similar) can result in cascading failures. In the next two 
sections, we develop simple models to analytically understand this behavior. 

Before we begin our modeling, we give a brief overview of BGP behavior. BGP is the inter-
autonomous system (AS) routing protocol. At the boundary of each autonomous system, peer 
border routers exchange network reach ability information with other autonomous systems through 
BGP. BGP uses TCP as its transport protocol. Two BGP speakers form a transport protocol 
connection between one another, and they exchange messages to open and confirm the connection 
parameters. When a connection is first established, a BGP speaker sends its entire routing table to 
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the peer (a full state dump). During the following BGP session, incremental updates are sent as 
the routing table changes. Two types of BGP messages are important to BGP operation. First is 
Keep Alive message, which is sent periodically to ensure the connection is live. If the peers can't 
receive KeepAlive messages in a preset period of time, the BGP connection has to be closed. 
Physical connectivity failure (link failure, router crash), transient connectivity problems due to 
congestion, or even manual reboots, may result in the delay of KeepAlive message to the 
peers. When BGP sessions restart, the peers have to send the full routing table again. Update 
messages are used to exchange routing information change between two peers. Route 
withdrawals are sent when a router makes a new local decision that a network is no longer 
reachable. We study the clique topology (fully connected mesh) in subsequent sections. The 
clique topology provides the most complex interactions, and in the core of the Internet the major 
Autonomous Systems form a clique. 

D3. Simple Fluid Model 

Let's build a very simple model of the interactions in the system and explore its properties. We 
consider a simple scenario with a finite set of N routers, that are all connected to each other, i.e. 
form a clique. Let the number of down routers at any instant be D(t). We define a "down" router 
to be one that does not have a functioning routing table, so a router that is in the process of 
rebooting and obtaining state dumps is also defined to be "down". Now, we study the system of the 
number of down routers. The arrival and departure process to the system is defined as: 

 

Consider the process δ(t). The down routers come up with the help of the routers that are 
currently up (N(t) — D(t)). We define the service rate of an up router as ks, where ks is the 
average number of down routers a functioning router restores per unit time. Now, if N(t) — D(t) 
servers are up and providing service, the service received by a single down node is its share of the 
total service capacity of the system. Thus, the share received by a single router is (N(t) — 
D(t))/D(t). To account for the boundary condition D = 0, the denominator should actually be 
the the term (D(t) + ka), where ka represents the ambient load on the servers, representing for 
instance processing of normal route advertisements, and prevents D → ∞ . However, for simplicity 
of exposition we ignore the term as it does not affect the main observation we obtain later. Hence, 
the number of departures in an infinitesimal time dt, dδ(t), is defined by 

 

Resetting of BGP sessions lead to two kinds of messages, withdrawal announcements and 
subsequently full state updates when the BGP session is restored. We model the rate at which a 
functioning router goes down due to the load imposed by the resetting of a single BGP session 
as kl. Typically, we expect ks » kl, as BGP resets are not uncommon and restoring a single 
session is unlikely to cause a peer router to go down. Now, the average arrivals in an 
infinitesimal time dt, dα(t), is given by the product of three quantities: the constant kl, the 



 

65 

number of routers (BGP sessions) that are currently down D(t) (denoting the total load offered), 
and finally the number of routers currently up (that can go down), (N(t) — D(t)), i.e. 

dα(t) = klD(t)(N(t) - D(t))dt (4) 

Now D(t) is α(t) — δ(t), hence combining (3) and (4) we obtain the drift equation 

 

Simplifying and dividing by dt both sides, we obtain the following relation 

 

This is a Riccati equation, and without going into the actual solution of the equation, we 
immediately observe that the dynamical system described by this model exhibits a phase 
transition: If the initial state D(0) of the system is above a certain threshold, then as limt→∞ D(t) = 
N, else limt→∞ D(t) = 0. In other words, if by some exogenous process (e.g. CODE RED) we 
manage to bring a certain number of the routers down, thereby resetting the BGP sessions, then 
depending upon that number the system either fully recovers or there is a cascading failure. This 
is seen in plot (a) in the Figure below, where we plot the RHS of (6) as a function of D. This 
is very similar to results obtained in epidemic modeling, see [12]. For a value of D above ks/kl, the 
derivative of D remains uniformly positive, making the system drift to the state where all routers 
are down. For D below that number the derivative remains uniformly negative, bringing the system 
back to recovery. An interesting fact here is that this threshold is an absolute quantity rather than 
a fraction of N. Hence, given the right parameter set this phase transition may not be exhibited 
at all. A simulation of the system with different initial conditions is shown in plot (b) in the 
Figure below, where ks/kl = 20 and we plot two trajectories, one with D(0) = 21 and another 
with D(0) = 19. The presence of phase transition in the fluid model piques our interest enough 
to attempt a refinement of the model, and observe the behavior.  In the next section, we move 
away from the fluid model and develop a birth-death model for the system. 

 

Figure 41:  Phase transition in model 
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D4. A Birth-Death model 

Now we construct and analyze the discrete analog of the basic fluid model we studied in the 
previous section. Again, we assume there are N identical routers in the system, forming a 
clique. A state in the birth-death represents the number of down routers in the system. The 
model is depicted in the following Figure.  

 

Figure 42:  Birth-Death Process - state i represents number of down nodes 

The transition rate from state i to i + 1 is given by λi = (N — i) x (i) x kl + ka, i = 0 ... N-1; 
and similarly the transition from i + 1 to i is given by µi = (N — i) x k s , i  = 0. . .  N-2. µN-1 is 
defined to be zero, as there is no repair when all routers are down, hence state N is an 
absorbing state. To understand the behavior of this model, we have to perform a transient 
analysis, as the system ends up in state N with probability 1. The mean time to absorption from 
state i to N, Wi, is a good indicator of the behavior of the system. Physically, Wi is to be 
interpreted as roughly the time it takes for the system to collapse if i routers are currently down. 
Next, we compute Wi. In state i, the mean time to the next transition out of state i is 1/(λi+µi-

1), 0 < i < N. At that transition, the expected remaining time to absorption is Wi+1 with 
probability λi/(λi + µi-1) and Wi with probability µi-1/(µi-1). Then 

 

Next, we apply the boundary conditions that are µ-1= 0, and λ-1 = 0.  The first condition yields 

 

while the second boundary condition yields 

 

Combining equations (7), (8) and (9), we obtain for i > 1 

 

Where ρk = λk/µk. With WN = 0, (10) yields a way to compute Wi as a function of i. 
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D5. Model Analysis 

The phase transition that we encountered in the fluid model is manifested in the form of a 
sharp decrease in Wi in the birth-death model. We explore the parameter space of N, kl, ks and 
ka to identify possibilities of cascading failures. First we assume that the "ambient" load, ka, 
is a small fraction of the full state update load kl. We choose the fraction to be 1/100. Now 
we vary the ratio kl/ks and the size of the system N and observe the behavior. For kl we 
assume a value 0.01/s, i.e., the rate of crashing of a router under the load of a full state update 
is 0.01 per second, and for ks we assume a value of 1/s, in other words a working router 
brings up a crashed router at the rate of 1 router per second. First we assume a small clique, of 
20 routers. The mean time to absorption is shown in plot (a) of the Figure below. As we can 
observe the mean time to absorption is of the order 1023 seconds, as long as even one router 
is up. Hence, this system is unlikely to undergo cascading failures. Next, we increase the 
size of the clique, from 20 to 100, and plot the results in (b) of the Figure below. 

 

Figure 43:  Stable behavior exhibited by small to medium cliques 

The mean time to absorption now starts to show a decrease as i increases, but is still relatively 
quite high throughout. It is of the order 1044 throughout, hence when the system appears to have 
become more stable, as the meantime to absorption has increased by several orders of magnitude. 
This makes intuitive sense, as increasing the size of the clique increases the redundancy in the 
system and there are more up routers "available" to bring up crashed routers. Now, we increase 
the clique size to 200, and show the results in plot (a) of the Figure below. Now, we observe the 
first appearance of the phase transition. At roughly i = 100, the mean time to absorption starts 
decreasing rapidly, and in a matter of few states, the time falls from an order of 1044 to close to 0! 
Thus, an apparently highly stable system becomes extremely vulnerable and can cascade into a 
collapsed state, where all routers are down in no time. This behavior is again observed in a 
clique of size 400, shown in plot (b) of the following Figure. The transition appears at around the 
same spot, around state 100. 
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Figure 44:  Phase transitions observed in larger cliques 

The state 100 around which the phase transition starts to take effect is roughly the ratio ks/kl. 
Note that this is similar to what we observed in the fluid model. This can be observed in the 
Figure below, where we plot the mean time to absorption for an identical clique size of 200, but 
vary the ratio ks/kl. 

 

Figure 45:  Phase transition point as a function of ks/ki 

The effect of the clique size on cascading failures is also interesting. We now fix the ratio ks/kl, 
and vary N. The results are plotted in the following Figure. Increasing N does not change the 
location of the phase transition, but does affect the relative stability before the transition. As we 
increase N, beyond the size where the system shows a phase transition, the relative stability 
decreases. This is in contrast to the scenario we earlier saw, where increasing N increased the 
relative stability for small to medium clique sizes. 
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Figure 46:  Relative stability and phase transition point for N=200, 300, 400 
 

This behavior is more clearly observed in the Figure below, where we plot the mean time to 
absorption as N goes from 80 to 100 in steps of 10. We observe that the relative stability increases 
as N increases. 

 

Figure 47:  Relative stability and phase transition point for N=80, 90, 100 
 

D6. Conclusions 

We have developed simple analytical models to capture the interaction of systems like BGP 
routing. We specifically develop models for the clique topology (the one that is used at the AS 
level on the global Internet) and discovered phase transitions with respect to cascading failures in 
the models. Our findings confirm the measurement based inferences made in [1] on 
possibilities of cascading failures in the routing infrastructure. Our models indicate that both the 
size of the clique as well as the capacity of the nodes in the clique is an important consideration 
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for the phase transitions. The size of the clique acts as a threshold for the phase transitions, given 
other parameters, the clique must be large enough for the transition to appear. Increasing the clique 
sizes beyond the threshold does not change the location of the phase transition, but does have an 
effect on relative stability. On the other hand, if the clique size is large enough, then the capacity 
of the nodes in the system decides the location where the phase transition occurs. 

In terms of future work, we are working on a more detailed model for a single router to 
understand individual node failures. A better understanding of individual node behavior would 
then permit us to model more complex topologies, moving beyond the homogeneous cliques that 
we have studied here. An interesting question that our models can answer is to what kinds of 
interactions make the system most resilient? In other words, the transition rates in our model 
assume a certain kind of interaction. If that interaction is modified, does that lead to more resilient 
networks? That question of course has to be asked in conjunction with the issue of the 
performance of system under normal circumstances, and these are questions that we are trying to 
answer. 
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Appendix E:  Analysis and Design of Controllers for AQM 
Routers Supporting TCP Flows 

E1. Introduction 

The development of new Active Queue Management (AQM) routers will play a key role in 
meeting tomorrow's increasing demand for performance in Internet applications. Such 
applications include voice over IP (VoIP), class of service (CoS) and streaming video where 
packet size and session duration exhibit significant variations. In this context we have three 
objectives. First, to relate key network parameters to the AQM problem. Secondly, to analyze the 
present de facto AQM standard: random early detection (RED) and finally, to recommend 
alternative AQM schemes. The uniqueness of our approach comes from the use of a recently 
developed dynamic model of the Transmission Control Protocol (TCP) which enables 
application of control principles to address the basic feedback nature of AQM. 

To begin, we first consider a simple sender-receiver connection passing through a bottleneck 
router as shown in the Figure below and schematic in the subsequent Figure. Under TCP, a 
sender probes the network's available bandwidth by linearly increasing its rate until data 
packets are lost. Upon packet loss, the receiver signals the sender to reduce its rate. Some 
drawbacks in this packet-dropping scheme include flow-synchronization and performance 
degradation due to excessive time-outs and restarts. Motivated by these network inefficiencies, 
the RED scheme was introduced in [2] to allow the router to assist TCP's management of 
network performance. Rather than waiting for packet loss to occur, RED acts preemptively by 
measuring the router's queue length and throttling the sender's rate accordingly. Since TCP is an 
end-to-end protocol, RED achieves this feedback indirectly by randomly dropping/marking 
packets and routing them to the receiver.   

 

 

Figure 48:  A single sender-receiver connection 
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Figure 49:  A schematic of a sender-receiver connection 

The receiver, in turn, completes the feedback by acknowledging the receipt of marked packets 
to the sender; this is depicted in the following Figure where we emphasize the implicit, delayed, 
feeding-back of acknowledgment packets. Upon receipt of such acknowledgments, the sender 
increases or decreases its rate according to the TCP algorithm. The randomness in RED's packet-
marking scheme is meant to eliminate flow-synchronization while queue-averaging was 
introduced to attenuate the effects of bursty traffic on the feedback signal. A drawback in 
deploying RED stems from its apparent tuning difficulties (see [4] and [5]) and the research 
community has responded with modifications such as in [6], [7], [8], [9], [10] and [11]. It has also 
motivated our research. Central to our approach is the recognition that AQM schemes, such as 
RED, use feedback (evident in the following Figure) to regulate queue efficiency. Consequently, 
feedback control principles appear to be an appropriate tool in the analysis and design of AQM 
strategies. While such principles can be found in the analysis of ATM networks (see for example 
[12] - [14] and the references cited therein) they have not been applied to TCP-controlled flows. 
This is apparently due to a lack of analytical model of TCP's congestion-avoidance mode. 
Recently, there has been progress in modeling of TCP; see [15] and [16]. 

 

Figure 50:  RED randomly marks packets to anticipate congestion 

Our launching point is the fluid-flow model of TCP behavior presented in Section 3 (see ref. [17]). 
This model expresses TCP in a language that allows control engineers to analyze and design 
AQM schemes. To be more specific, this model enables us to do several things. First, to relate key 
network parameters such as TCP load, link capacity and round-trip time to the underlying feedback 
control problem. Secondly, to analyze RED and recommend that averaging is not beneficial, and 
finally, to suggest alternative AQM schemes which amount to classical proportional (P) and 
proportional-integral (PI) control. The benefits of these schemes are illustrated through ns 
simulations. One of the most promising outcomes of this work is the impact PI control has on 
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queue utilization. The key feature is that PI control allows one to explicitly set the network 
queuing delay - independent of network parameters.  

E2. Dynamics of TCP's congestion-avoidance flow-control mode 

In [17], a dynamic model of TCP behavior was developed using fluid-flow and stochastic 
differential equation analysis. Simulation results demonstrated that this model accurately captured 
the dynamics of TCP. We use a simplified version of that model which ignores the TCP timeout 
mechanism. This model relates the average value of key network variables and is described by the 
following coupled, nonlinear differential equations: 

 

where x denotes the time-derivative and 

 

The first differential equation in (1) describes the TCP window control dynamic. Roughly 
speaking, the 1/R term on its right-hand side models the window's additive increase, while the 
W/2 term models the window's multiplicative decrease in response to packet marking p. The 
second equation in (1) models the bottleneck queue length as simply an accumulated difference 
between packet arrival rate NW/R and link capacity C. We illustrate these differential equations 
in the block diagram of the following Figure which highlights TCP window-control and queue 
dynamics.  
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Figure 51:  Block-diagram of TCP's congestion-avoidance mode 

We now approximate these dynamics by their small-signal linearization about an operating point 
to gain insight for the purposes of feedback control (AQM).  A block-diagram representation of 
these linearized dynamics is given in the following Figure where the TCP window-control and 
queue dynamics are explicitly identified.   

 

Figure 52:  Block-diagram of the linearized TCP connection 

A main reason for modeling and linearization of window and queue dynamics is for the purpose 
of the design and analysis of AQM schemes.  To this end, we continue to simplify these dynamics 
by focusing on the nominal (low-frequency) behavior of the window dynamic and accounting for 
the residual behavior into a high-frequency parasitic.  In the following Figure, we perform block-
diagram manipulation to isolate this dynamic as well as identifying the high-frequency residual 
∆(s). 
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Figure 53:  Linearized dynamic illustrating nominal window dynamic and high-frequency parasitic 

E3. The AQM Control Problem 

In the following Figure we give a feedback control system depiction of AQM. The action of an 
AQM control law is to mark packets (with probability p) as a function of measured queue length 
q. The plant dynamics, denoted by the transfer function P(s), then relates how this packet-
marking probability dynamically affects the queue length. The transfer function ∆(s) represents 
high-frequency window dynamics.  

 

Figure 54:  AQM as feedback control 

The magnitude Bode plots for these transfer functions are shown in the following Figure. The 
Bode plots of P reveal the low-pass nature of the TCP-queue dynamics as well as the inverse 
dependence of loop gain on the number of TCP sessions N. The frequency response of residual 
∆ shows its influence at higher frequencies. One objective of an AQM design is to stabilize these 
residual dynamics. 



 

76 

 

Figure 55:  Magnitude Bode plots for P(s) and ∆(s) for TCP loads of 60 and 120 sessions 

As in any control system design, a first step is to pose performance objectives. For AQM, 
performance objectives include efficient queue utilization, regulated queuing delay and 
robustness. 

1) efficient queue utilization: For efficient use, the queue should avoid overflow or emptiness.  
The former situation results in lost packets and undesired retransmissions, while an empty 
buffer underutilizes the link. Both of these extremes should be avoided in both transient and 
steady-state operation. 

2) queueing delay: The time required for a data packet to be serviced by the routing queue is 
called the queuing delay and is equal to Cq. This time, together with the propagation delay 
Tp, accounts for the network's queuing delay and it is desirable to keep small both the 
queuing delay and its variations. This calls for regulating to small queue lengths; however, 
doing so may result in link underutilization and this limitation presents a fundamental 
tradeoff to AQM design. 

3) robustness: AQM schemes need to maintain closed-loop performance in spite of varying 
network conditions.  These conditions include variations in the number of TCP sessions N, 
variations in the propagation delay Tp. 

Consider the linear control system in the following Figure where transfer function C(s) represents a linear AQM 
control law.  Closed-loop stability is fundamental in meeting the above performance objectives. 
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Figure 56:  Block diagram of a linearized AQM control system 

E4. AQM using RED 

The simplest of congestion-avoidance scheme is the so-called drop-tail law which signals TCP 
sources to reduce window sizes whenever the queue overflows, which amounts to an "on-off” 
AQM control law.  This on-off mechanism leads to queue-length oscillations, flow 
synchronization and performance degradation due to excessive time-outs and restarts.  

Motivated by these network inefficiencies, the RED AQM scheme was introduced in [2] to allow 
the router to assist TCP's management of network performance. Rather than waiting for packet 
loss to occur, RED acts preemptively by taking an average measure of the router's queue length 
and throttling the TCP window accordingly by randomly marking packets. This randomness in 
RED's packet-marking scheme was meant to eliminate flow-synchronization, while queue-
averaging was introduced to attenuate the effects of bursty traffic due to restarts and time-outs on 
the feedback signal. A drawback in deploying RED stems from its apparent tuning difficulties, 
see [4] and [5]. As we now show, we believe this difficulty stems in large part to RED's use of 
average queue length. Indeed, introduction of a low-pass filter into the feedback system in can 
lead to sluggish, oscillatory closed-loop behavior. 

The RED active queue management control law computes the packet-marking probability p as a 
function of measured queue length q as depicted by the AQM control law in the block diagram 
of Figure E7. Specifically, RED consists of a low-pass filter (for queue averaging) and packet-
marking profile as shown in the following Figure. Tuning RED amounts to selection of the low-
pass filter pole K, threshold qmin, level pmax and gain Lred. The apparent motivation for 
introducing low-pass filtering in the AQM control law was to attenuate the 
effect of bursty, non-TCP controlled traffic on packet-marking.  While this rationale for 
introducing low-pass filtering has some intuitive merit, it ignores the effect on closed-loop 
stability which amounts to introducing additional phase lag into a loop already containing time 
delay and two low-pass filter dynamics (associated with the TCP window and queue). 
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Figure 57:  RED as a cascade of low-pass filter and nonlinear gain element 

We illustrate our RED design via simulations using the ns simulator. Although the preceding 
analysis was carried out using the linearized model, the ns simulator captures the stochastic, 
nonlinear nature of the network dynamic. We considered a single bottlenecked router running 
RED and, in addition to the TCP flows addressed in our model, we also introduced short-lived 
http flows into the router to generate a realistic traffic scenario. The http flows were simulated 
using the http module provided with ns. The effect of these short-lived flows was to introduce an 
exogenous, noisy flow into the queue. In all of our plots the horizontal axis measures time (secs) 
while the vertical axis displays instantaneous queue length q (packets). 

In the first simulation, we introduced 60 TCP flows and 180 http sessions. The capacity C is 15 
Mb/s and the propagation delay Tp ranges uniformly between 160 and 240 ms. To provide a 
queuing delay of around 50-70 ms we set minth and maxth of the packet-marking profile 10 to 200 
and 250 respectively. The average packet size was set to 500 bytes. RED's averaging weight α 
and pmax were taken to be "vanilla;" i.e., the default values in ns. The buffer capacity was 800 
packets. We set the gentle - parameter in RED to "on". The result is shown in Plot (a) of the 
following Figure which shows the oscillating nature of the queue length. The link is 
underutilized whenever the queue length goes to zero. Also, the large queue oscillation results in 
considerable variation in the round-trip times of packets. 

Now we use the RED design in (11) and take the averaging weight α to be 1.33 x 10-6, pmax to 
0.1 and the dynamic range (minth, maxth) as (150,700) packets. The results are plotted in Plot (b) 
of the following Figure. We see that the system response is stable, with fluctuations about an 
operating level of the queue. The larger oscillations experienced in the previous experiment are 
absent in this RED design. The slow response time is related to a low value of crossover 
frequency ωg in our design. To improve the transient response, we can design for larger bandwidth 
ωg; however this would come at the expense of lower stability margins. 
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                                                                                                                                                                                                (a) RED parameters chosen as default ns values                                   (b) RED parameters chosen for stability 

Figure 58:  ns simulations comparing performance of RED controllers 

E5. AQM using Proportional Control 

The preceding RED controller resulted in small closed-loop bandwidths and thus sluggish 
behavior. One way to improve the response time of the system is to remove the low-pass filter 
completely. In doing so, we arrive at a classical, proportional controller. In proportional control 
the feedback is simply a scaling of the queue length and, in context of RED, this amounts to 
obtaining the packet-marking probability based on the instantaneous queue length rather than 
averaged queue length.  Again, there exists a tradeoff between loop bandwidth and stability. 
However, the tradeoff is more favorable in the proportional case. 

In this simulation, we consider a queue with 60 TCP flows and 180 http sessions. The link 
bandwidth is 15 Mb/s, and the propagation delays for the flows range uniformly between 160 
and 240 ms, with average packet size being 500 Bytes. The buffer size is 800 packets. We also 
introduce a time-varying TCP load N(t) to compare the speed of response between the RED and 
proportional controllers. At time t = 100, 20 of the TCP flows drop out and at time t = 140 they 
return. For the proportional controller, we set the averaging weight α = 1 thereby removing the 
low-pass filter. We set the slope of the packet-marking profile to be the gain KP, varying the loss 
linearly from 0 at queue length 100 with the slope specified by gain. Note that the buffer size of 
800 puts an upper limit on the marking probability, which is approximately 0.04. We'll return to 
this issue following the experiment. The queue length plots are shown in Plot (a) of the following 
Figure. As evident from the traces, the proportional controller performs better, responding more 
quickly to load variations. However, this was to be expected since the closed-loop bandwidth for 
the proportional design exceeded that of the RED design by almost a factor of thirty. 



 

80 

 

Figure 59:  ns simulations of proportional control 

While the proportional controller exhibits more responsive behavior than RED, it also suffers 
from a limitation which makes it impractical to implement under certain situations. For example, 
the steady-state buffer length is commensurate to the proportional controller's gain. Hence, 
buffer-size limitations could require gains outside the region of stabilizing proportional gains; 
such observations are also made in [11]. To illustrate, we repeat the previous experiment but 
change pmax from 0.04 to 1 for the proportional controller, to reflect a desire to keep the steady-
state buffer length small. The result in Plot (b) of the previous Figure shows significant 
oscillations. 

Increasing the buffer size to work around this problem is not an option since this could lead to 
unacceptably large queuing delays. The problem arises due to the coupling between queue 
length and marking probability. The two can be decoupled if we use integral control [22] in the 
AQM controller. Both the proportional and RED controllers result in control systems having 
(network-dependent) steady-state errors.  For stable closed-loop systems, integral control drives 
the steady-state error to zero. Thus, we can design an integral controller for AQM which 
regulates the queue to a given operating level, independent of the load N. The simplest integral 
controller is the proportional-integral (PI) controller which appears appropriate for AQM context 
since, in comparison to RED, yields larger closed-loop bandwidths without sacrificing stability 
margins. 

E6. AQM using Proportional-Integral Control 

A PI controller has a transfer function of the form 

 

A desired consequence of the integral term is that δq in Figure E9 asymptotically converges to 
zero if C(s) stabilizes. In the following Figure we show implementation of the PI control law 
with the nonlinear TCP/AQM dynamic (1) emphasizing the role of the queue's operating point 
q0. 
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Figure 60:  Implementation of PI controller emphasizing role of operating point q0 

The open-loop transfer function using PI control is 

 

To validate the performance of the PI controller, we implemented it in ns with a sampling 
frequency of 160 Hz. The operating point was chosen as q0 = 200 packets. We repeat the 
simulation shown in Figure E12(a), using the PI controller in lieu of proportional. The queue 
length plots for the RED and PI controllers are plotted in Plot (a) of the Figure below. The faster 
response time as well as the regulation of the output to a constant value by the PI controller is 
clearly observed. The PI controller is less sensitive to the load level variations and regulates the 
queue length to the operating point of 200 packets. 

 

Figure 61:  Comparison of RED and PI control under time-varying and heavy TCP loads 
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We now increase the number of TCP flows to 180 and http flows to 360. The response should be 
slower for this higher load level N. The queue lengths are plotted in Plot (b) of the previous 
Figure and we observe significantly better performance from the PI controller. The RED 
controller takes a long time to settle down, with the steady-state queue length quite large 
compared to the preceding simulation. The PI controller on the other hand is still regulating the 
queue length to 200 packets. The PI controller regulates to q0 independent of TCP load. 

In the next simulation we exercise the controllers at the other end of the load spectrum by 
reducing the TCP flows to 16 sessions. As observed in Plot (a) of the Figure below, the responses 
are more oscillatory corresponding to reduced phase margins. Finally, we stretch the controllers to 
the limit by increasing the number of TCP flows to 400. In Plot (b) of the Figure below the PI 
controller continues to exhibit acceptable performance, although its response has slowed. The 
RED controller, on the other hand, keeps the buffer in overflow. At such high load levels, the loop 
gain has decreased to a point where (large) regulating errors have pushed the steady-state queue 
length beyond the buffer size. This simulation illustrates the benefit of integral control in an AQM 
system with a finite buffer. 

 

Figure 62:  Comparison of RED and PI control under a light and very TCP loads 

An important consideration in designing AQM systems is the tradeoff between queuing delay 
and utilization. Intuitively, larger buffers lead to higher utilizations of the link, but they also result 
in larger queuing delays. With the PI controller, the delay is essentially tunable with a single 
parameter q0. Larger values of q0 give larger delay and utilization. In contrast, with RED, the delay 
is a function network conditions such as load level and packet-marking profile parameters minth, 
maxth and pmax. We performed simulations to study this tradeoff as illustrated in the following 
three Figures where both pure ftp and mixed ftp and http flows are considered. As we observe in 
Figure E16 (a), small q0 yields nearly full utilization in the case of pure ftp flows, whereas a larger 
q0 is needed to reach this same level of utilization when both ftp and http are considered. The 
corresponding queuing delays are shown in Figure E16 (b) indicating a nearly linear relationship 
with q0. The corresponding delay-utilization curves are shown in Figure E17. We repeated these 
experiments with RED attempting to control delay through parameter minth. We kept the range 
maxth - minth constant throughout. We ran the first experiment using a dynamic range of 550 and 
then repeated with a range of 55. We compare the performance with the PI design in Figure E18 
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where both long and short-lived flows were used. In the first of these figures, RED yields high 
utilization at the expense of large delays. When we reduced the queuing delay by lowering RED's 
dynamic range, utilization suffered. The PI design was capable of operating at both low delay and 
high utilization. 

 

Figure 63:  Utilization and queuing delay of the PI controller 

 

Figure 64:  Ultilization versus queuing delay:  PI controller 

 

Figure 65:  Queuing delay - utilization tradeoff:  comparison between RED and PI control 
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E7. Conclusion 

We analyzed a combined TCP and AQM model from a control engineering standpoint. We used 
linearization to analyze a previously developed nonlinear model of TCP. We performed the 
analysis on an AQM system implementing RED and presented design guidelines for choosing 
parameters which lead to local stability. We performed nonlinear simulations using ns which 
verified our analysis. In doing the analysis, we uncovered limitations of the averaging algorithm 
in RED. In addition we have proposed and designed two alternative controllers. The resulting 
control systems had faster response than the RED controller. The first of the designs, a 
proportional controller, displayed good transient response but suffered steady-state errors in queue 
regulation. This restricts its usefulness in systems where the buffer size is limited. Motivated by 
that limitation, we designed a classical PI controller which exhibited zero steady-state regulation 
error and acceptable transient behavior. The PI controller was simple to implement in ns which we 
compared under various scenarios with RED. The PI controller exhibited better performance 
under all cases considered. We also demonstrated the practical impact of the PI controller in 
managing queue utilization and delay. We have concentrated on simple and classical designs for 
AQM control. Modern control methodologies could be used; however, going this route may have 
obfuscated one of our main objectives which is to relate AQM control objectives directly to 
network parameters. Finally, there are a number of different areas in which the techniques 
presented here could be extended. Examples include networks with heterogeneous round-trip 
times, multiple congested routers and uncertain routing topologies. 
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Appendix F:  On Integrating Fluid Models with Packet 
Simulation 

F1. Introduction 

Networks, and the Internet in particular, have seen an exponential growth over the past several 
years. This growth is likely to continue for the foreseeable future, and understanding the behavior 
of such systems is critically important. A number of discrete event-driven simulators [1], [2], 
[3], [4] have been developed for this purpose. These simulators provide accurate information for 
every simulated packet. They provide an important tool for designing new protocols, improving 
existing protocols, and verifying new observations. However the simulation capabilities of 
these simulators have fallen far behind the scale of the Internet today and this gap is growing 
as the size and speed of the network is growing. As an alternative, fluid models have been 
proposed in recent works [5], [6], [7] to analyze the performance of networks. The fluid models 
can predict the behavior of large networks both accurately and efficiently. In [6], networks 
consisting of hundreds of routers and thousands of high bandwidth links supporting millions of 
flows can be simulated in minutes on a desktop PC, a feat that is unachievable by current discrete 
event-driven simulators. However the fluid model provides no detailed information regarding 
individual packets, and its application is hindered by this limitation. 

A simulation method that combines the best features of the above fluid and packet-level 
approaches is desirable for several reasons. First, by efficiently simulating large networks and 
providing detailed information for selected individual traffic flows, it is possible to study the 
performance of communication protocols deployed at end hosts across a wide area high speed 
network. Research on existing and future communication protocols for the Internet can 
potentially benefit from such a simulation method. Second, it would permit the performance 
study of small edge networks, such as wireless networks that exchange traffic with wide area 
networks. A small edge wireless network would best be simulated as a packet-level network 
whereas the WAN would be more efficiently modeled as a fluid network. Finally, introducing 
non-TCP traffic into the fluid model provides an alternative method to study wide area traffic, 
which may lead to better models of real Internet traffic. Such models could be useful in creating 
more efficient simulation methods and studying a large class of network problems. 

In this appendix, using the topology-aware fluid model presented in Appendix B (also [6]), we 
develop a hybrid simulation approach that consists of a set of packet flows and fluid flows. We 
present two models of the interaction between the packet flows and the fluid flows traversing a 
network. Algorithms are presented for deriving the behavior of the packets, e.g., end-to-end 
latency and loss. The simplest of these models ignores the effect that the packets have on the 
fluid network and simply uses the solutions to the fluid network model to determine the outcome 
of each packet. The second approach accounts for the load introduced by the packet flows by 
transforming them into fluid flows that feed the fluid network. The solution of this augmented 
network is then used to determine the outcomes of the packets. These approaches require one 
and two passes, respectively and will henceforth be referred to as the one pass and two pass 
interaction models. The following Figure shows an example of such a hybrid simulation. 
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Figure 66:  An example hybrid simulation 
 

For both approaches, we establish the correctness of the resulting simulators and evaluate their 
accuracy and computational speedup through simulation. We have implemented both 
approaches in several popular simulators, including ns-2. We find that the one pass algorithm is 
fast and accurate provided that the offered packet load is very small compared to the load 
offered by fluid flows. Its accuracy degrades as the offered load due to the packet flow increases. 
On the other hand, the two-pass algorithm is very accurate, independent of the load introduced 
by the packet flows while incurring a slight slowdown. Henceforth, the word simulator refers to 
the discrete event-driven simulator used in the hybrid simulation unless further clarified. 

Several works are particularly related to our study. In [8], a hybrid model is established for 
fast network simulation. The idea is to model network traffic as fluid flows and generate 
discrete events for packet losses within the network. [9] outlines the design of a fluid-oriented 
hybrid simulator admitting both packet flows and fluid flows. The hybrid simulator is 
implemented using the discrete event simulation framework. Recently, a dynamic simulation 
backplane was developed for creating distributed, component-based simulations of 
communication networks by interconnecting models of subnetworks drawn from different 
network simulation packages [10]. Based on this backplane, a multi-paradigm simulation 
framework, MAYA, is proposed to integrate three disparate modeling paradigms: discrete event 
models, analytical models and physical network interfaces. In particular, the fluid model proposed 
in [5] is integrated with the packet simulator Qualnet [11], [3]. 

F2. Traffic Interaction Models 

In this section, we address the problem of modeling interactions between the foreground packet 
traffic and the background TCP traffic. When the foreground packet traffic traverses the fluid 
network, the delay and drop probabilities of the packets are determined by the queue lengths 
and drop probabilities of the queues in the fluid network, which are computed by the fluid 
model solver. On the other hand, the queue lengths and drop probabilities of these queues are 
affected also by the traversing foreground packet traffic, which then affect the background TCP 
traffic accordingly. 

A hybrid model is built based on the fluid model. In the hybrid model, the network G serves not 
only a population of N classes of TCP flows, but also a population of M packet flows. A packet 
flow consists of a sequence of packets that share the same path in the fluid network. Each packet 
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flow i has a packet arrival process, 7»(t), which denotes the number of packets arriving at the 
fluid network by time t, {SJ}, which denotes the sequence of packet lengths associated with the 
flow, and a path in the fluid model defined as Ei = (li,1, li,2, . . ., li,hi).  

We present two algorithms for dealing with the traffic interaction problem. The first assumes that 
packet flows impose a load on the fluid network that can be neglected. The second accounts for 
the load that the packets impose on the fluid network. The first will require a single pass 
through time in order to determine outcomes for each packet (loss/no loss, end-end delay) and 
will be referred to as the one-pass traffic interaction model; whereas the second requires an 
additional preliminary pass to solve the fluid network accounting for the load introduced by the 
packet flows and will be referred to as the two-pass traffic interaction model. 

A. One-pass Traffic Interaction Model 

Since the one-pass traffic interaction model assumes that the packet flows have negligible 
effect on the background TCP traffic, the queue lengths and drop probabilities seen by the 
packets are identical to those predicted by the fluid model. Thus, the delay and drop probability 
experienced by a packet traversing through a fluid network are estimated using the queue lengths 
and drop probabilities derived directly from the fluid model in [6]. The delay and drop 
probability for each packet are computed cumulatively along its path in the fluid network. The 
packet is scheduled to depart from the fluid network according to this delay and drop 
probability. 

The one-pass model is based on the assumption that the packet flows have negligible effect on 
the fluid network. This should be reasonable provided that the rate of the traversing foreground 
packet traffic is small enough. However, it is often the case that the foreground flows have 
considerable throughput such that the accuracy of the simulation results given by the one-pass 
model can be impaired. One extreme example is a hybrid simulation in which there is one 
background TCP class traversing two identical queues in the fluid network and there are 
foreground packets traversing the second queue. If the throughput of the foreground packet 
traffic is high enough, the second queue becomes the bottleneck. However, in the one-pass model, 
the second queue is always empty regardless of the rate of the traversing foreground packet 
traffic.  

B.  Two-pass Traffic Interaction Model 

The two-pass traffic interaction model extends the one-pass model to account for the interaction 
between the packet flows and the background TCP traffic in the fluid network.  In the two-pass 
model, the behavior of the fluid network is determined during a first pass and the effect on the 
packets is determined once they traverse the network during the second pass. 

In the first pass of the two-pass model, the packet flows is transformed into foreground fluid 
flows that can be incorporated into the solution of the fluid model. This transformation and the 
resulting solution of the model constitute the first pass. In the second pass, the delay and the 
drop probabilities of the traversing packets are estimated using the queue states obtained during 
the first pass. 
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F3. Synchronization in Hybrid Simulation 

While most existing network simulators, [1], [2], [4] etc., are discrete event-driven simulators, 
the fluid model is a set of (coupled) ordinary differential equations of TCP network dynamics as 
functions of time [5], [6]. The states of the TCP network at any time can be directly obtained, in 
theory, by solving the set of differential equations. In practice, in order to save computational 
resources, the fluid model is solved incrementally as a function of time and all the network states 
prior to the current time in the fluid model can be obtained. For example, in [6], a fixed step-
size Runge-Kutta algorithm is implemented to solve the fluid model; thus the fluid model is 
solved using a time-stepped network simulator. Thus, the simulator generating packets arriving 
to the fluid network and the fluid model solver are likely to have separate time management 
systems and, if integrated in the context of a hybrid simulation, they will have to be 
synchronized. For example, in a two-pass hybrid simulation, the fluid model takes packet traffic 
from the packet simulator. It is essential to have the packet traffic rate available in time to 
advance the fluid model. On the other hand, the packet simulator needs those packets traversing 
fluid network to be delivered by the fluid model in time. 

Definition 1 (Tf): the simulation clock of the fluid model solver, meaning the states of the 
fluid network, e.g. queueing delay, packet loss, flow rate, etc., have been obtained for all t 
<Tf. 

Definition 2 (Ts): the simulation clock of the simulator, meaning all the packet events before 
Ts have been processed by the simulator. 

Definition 3 (τ): the minimal propagation delay of links that are the last hops on the packet's 
paths inside the fluid network. 

Definition 4 (δs): smoothing interval, packet flow during each interval is modeled as a constant 
rate fluid. 

The purpose of synchronization between the fluid model and packet simulator is to avoid out of 
order events. More specifically, we want to ensure that the fluid model never deliver a packet 
to the packet simulator with a timestamp t0 < Ts. At the same time, the packet simulator must 
never inject a packet into the fluid network with timestamp t0 <Tf. This places constraints on the 
rates that {Ts, Tf} can advance.  

Our approach for synchronizing the fluid model solver and the simulator aims at satisfying the 
synchronization requirements for the two-pass model, which is stricter than those for the one-pass 
model. So when the one-pass model is used in our implementation, its synchronization 
requirements are naturally satisfied. 

In our implementation, the fluid model solver is synchronized to the simulator every smoothing 
interval δs which is chosen to be smaller than τ. At each time when Ts = kδs, k = 1,2,..., a 
synchronization event is scheduled to happen. During this event, the fluid model solver 
evolves from Tf = (k - 1)δ s to Tf = Ts = kδs. The fluid model schedules out all packets that are 
supposed to arrive at packet network before Tf +τ. Since δs <τ, we can advance Ts to the next 
synchronization point (k + 1)δs. 
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F4. Implementation 

We have implemented the two traffic interaction models in ns-2[l], pdns[4] and the 
Backplane[10] by integrating the fixed step-size fluid model solver developed in [6]. In this 
section, we describe our implementation in the ns-2 network simulator as an example of how the 
hybrid simulation approach might be implemented. 

The design objective of our implementation is to achieve maximum flexibility when dividing the 
network under simulation into fluid networks and packet networks and deploying foreground 
packet traffic in the network. 

The Figure below on the left shows a network topology under hybrid simulation. Circled by the 
dotted oval is the fluid network simulated by the fluid model solver. The grey nodes in the fluid 
networks are points where packets enter or leave the fluid network. These nodes are 
duplicated in the form of ns node objects and serve as access points to the fluid networks. The 
Figure below on the right is the structure of the corresponding ns-2 network topology which 
consists of a fluid model solver and six ns node objects. The access points are connected to the 
fluid model solver via specially designed 'fluid links'. These fluid links are virtual links that 
have infinite service capacity and no propagation delay. Their only function is passing packets 
to the fluid model solver and vice versa. With this design, the network can be divided arbitrarily 
into fluid networks and packet networks and the foreground packet traffic can reach anywhere 
in the network. 

 

Figure 67:  Fluid model in a hybrid simulation in ns-2 

In our current implementation of the hybrid simulation, we assume that the paths between 
two access points in the fluid network are known and statically pre-configured. When a packet 
is routed to pass across the fluid network, it is first sent to one of the access points. The access 
point knows from its routing table that it should send the packet to the 'fluid link', which 
directly passes the packet to the fluid model solver and identifies the ingress point. The fluid 
model solver is an extension of an ns node object. After receiving a packet from the fluid link, 
the routing mechanism embedded in the ns node object is able to tell the next packet level node 
that the packet is going to arrive, which is also the egress point of the packet from the fluid 
network. Thus the two access points (the ingress point and the egress point) of the packet is 
known and so is the path of the packet in the fluid network. When the delay and the drop 
probability of the packet is computed, the packet is scheduled to arrive at the fluid link that 
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connects to the egress point ns node on the path of the packet. This procedure is shown in the 
following Figure. 

 

Figure 68:  Connecting the fluid model and ns node objects 

F5. Experimental Results 

We have carried out extensive experiments to test the accuracy and performance of the hybrid 
simulation approach. The accuracy and efficiency are evaluated by comparing the simulation 
results given by the hybrid simulation with those obtained in a packet level simulation. Five sets 
of experiments are presented to answer the following questions: 

• How should the smoothing interval length be set? 

• How does the one-pass model perform in terms of its accuracy? 

• How does the background TCP traffic in the fluid network interact with traversing 
unresponsive packet flows? These flows might be used to model video or audio flows 
running on top of UDP. 

• How do the TCP flows simulated by the fluid model compete with TCP flows 
simulated by a packet source when they share the same bottleneck queue? The fluid 
model has been shown to be accurate in describing the behavior of TCP networks, so the 
question is to judge its accuracy when the flows interact with real packet TCP flows. 

• Does the two-pass model hybrid simulation capture the interactions between multiple 
traversing foreground flows? 

• Do hybrid simulations scale? 

In the simulation, the smaller the smoothing interval, the more accurate the packet arrival rate is 
transformed into sending rate of the foreground flows in the fluid networks, which gives more 
accurate simulation results. On the other hand, smaller smoothing interval may cause more 
frequent interactions between the fluid model solver and the simulator. We test this potential 
cost that small interval may bring to the experiment. The result is that decreasing the smoothing 
interval doesn't bring any obvious increase in the simulation cost. This can be explained by the 
fact that, in our implementation, the extra work brought by decreasing the smoothing interval is a 
proportional increasing of synchronizing events and measuring the packet arrival rate. 
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The first part grows in reverse proportion to the smoothing interval, but its cost is negligible 
compared to the computation cost of the fluid model solver and packet simulation. The second 
part is a cheap division operation. In our case, the smoothing interval is set to be the same 
length as the fluid model solver step size since a smoothing interval smaller than the model 
solver step size is meaningless. 

The first set of experiments will explore the accuracy of the one-pass model as we increase the 
number of packet flows sharing a bottleneck link with background TCP fluid flows. 

The remaining experiments are all performed using the two-pass model. The second experiment 
observes a class of background TCP flows in a single bottleneck topology interacting with a 
UDP source whose sending rate changes with time. The accuracy is tested by comparing the 
delay and drops of the UDP traffic and the TCP network behavior given by the hybrid 
simulation and the packet simulation. Then, we present a set of simulation results showing the 
interaction between the background TCP traffic and different number of traversing foreground 
packet TCP flows. These results show that when sharing a bottleneck queue, the TCP flows 
modeled by the fluid model have the same competing capability for bandwidth as those simulated 
by the packet TCP sources, which further proves the correctness of both the hybrid simulation 
and the original fluid model. After that, simulation results of a hybrid simulation which consists 
of multiple foreground flows are given. In the last experiment, we show the capability of the 
hybrid simulation by simulating a network with more than 3,000 nodes and thousands of TCP 
classes consisting up to 12,378,340 TCP flows. 

All the experiments are performed multiple times and yield similar results. In all the 
experiments, we use TCP Newreno and RED with ECN marking as the AQM policy. The step 
size of the fluid model solver is fixed at 1ms except for the last experiment where the step size 
is set to 5 ms.  

F5.1. Accuracy of One-pass Model 

The setting of the experiment is shown in the Figure below. The six queues on the top are 
simulated in the fluid model and the other four queues on the bottom are simulated in packet 
form. B1 and B2 are access points between the fluid network and the packet network. The 
queue between B1 and B2 has a capacity of 100 Mbps and a propagation delay of 10 ms and is 
the bottleneck. Other queues have a capacity of 200 Mbps and a 10 ms propagation delay. Class 
0 and Class 1 are classes of TCP flows from node S1 to D1 and from node S2 to D2 respectively. 
Class 0 is the background TCP traffic simulated in the fluid model and Class 1 is the foreground 
packet traffic. 

 

Figure 69:  Network with single bottleneck 
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We perform the experiment 5 times. Each time there are 40 TCP flows going through the 
bottleneck queue and the 40 flows are divided between Class 0 and Class 1. In the kth time 
experiment, Class 0 contains 40 - k TCP flows and Class 1 contains k TCP flows. The TCP flows 
start at time 0 and ends at time 100s. We measure the throughput of the flows from 30s to 90s. 
For comparison, we perform experiments with the same scenario in a packet level simulation. 

Table I compares the throughput of the packet TCP flow(s) (Class 1) in a hybrid simulation 
with that given by the packet simulation. In all cases, the throughput given in the hybrid 
simulation is larger than that in the packet simulation. However, we can see that when the 
packet traffic is small, the one-pass model can be pretty accurate and in these cases, generally 
the error is under 10%. As the fraction of the packet traffic increases, there is an increasing trend 
in error. 

 

We will come back to this same scenario in the coming experiments and show how the two-pass 
model performs. 

F5.2. Interaction with UDP Traffic 

This experiment is to test the accuracy of the hybrid simulation when simulating the interaction 
between the background TCP traffic and a UDP traffic whose sending rate changes with time. 

The same network setting in the Figure above is used. This time, Class 0 is a class of 10 TCP 
flows from node S1 to D1 and Class 1 is UDP traffic from node S2 to D2. A 100s simulation is 
performed. The rate of the UDP traffic is 10 Mbps at time 0 and increases to 20 Mbps at 10s, 
30 Mbps at 20s, ..., until 90 Mbps at 80s. The packet size is set to 1000 bytes. 

The top plots in the Figure below compare the average delay and drop probability experienced 
by the UDP traffic in different simulation time slots given by the hybrid simulation and the 
packet simulation. In both cases, they show a good match. This implies that the hybrid 
simulation is able to predict the behavior of a UDP foreground flow when it traverses the 
background TCP traffic. The bottom two plots in the Figure below show the behavior of the TCP 
window size for Class 0 and the queue behavior of the bottleneck link. In the hybrid simulation, 
these results are given by the fluid model, which predicts the average behavior. We can also see a 
close match in these results. This accuracy of the fluid model predicting the average behavior is 
also reflected by the correct estimation of the average delay and drop probability that the UDP 
traffic experience. It shows that while the hybrid simulation can provide accurate packet level 
information for foreground packet flows, it can also estimate the average behavior for 
background TCP traffic and queues in the fluid network. 
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Figure 70:  Hybrid simulation between the fluid model and UDP traffic 

F5.3. Interaction with TCP Traffic 

We come back to the first experiment here. Now, we illustrate the accuracy of the two-pass 
model with the same setting as in the first experiment except that the packet traffic in this 
experiment takes more fraction of the total TCP flows. 

The experiment is carried out 10 times. Each time there are 40 TCP flows going through the 
bottleneck queue and the 40 flows are divided between Class 0 and Class 1. In the kth time 
experiment, Class 0 contains 4 * (11 - k) TCP flows and Class 1 contains 4 * (k - 1) TCP flows. 
So the fraction of the packet traffic increases proportionally to k and the experiment is a fluid 
model simulation at the first time. 

We record the throughput of the bottleneck from 30 s to 90 s in simulation and compare the 
computation time of each simulation. These experiment results are shown in the top two 
plots in the Figure below and Table II. In Table II, the first row shows the throughput of Class 
0, which is the TCP class simulated by the fluid model. The second row shows the throughput 
of Class 1, which are TCP flows simulated by the packet simulator. The third row is the total 
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throughput of the two and the forth row is the percentage of the packet throughput in the total 
throughput. As a reference, the simulation results given by a packet simulation are shown at 
place where 100% of the flows are packet flows. The bottom three plots in the Figure below 
show the average TCP window sizes of class 0 and class 1 and the bottleneck queue behavior in 
both hybrid simulation and peer packet simulation when both Class 0 and Class 1 contain 50% 
traffic (20 TCP flows) and evenly share the bottleneck service capacity. In (c) and (e) below, the 
comparison is between solutions of the fluid model used in the hybrid simulation and those 
given by a packet simulation. 

 

Figure 71:  Interaction between fluid TCP flows and packet TCP flows 

 

From these results, we see that the percentage of the packet throughput increases in proportion 
to its percentage of the total number of TCP flows, which strongly supports that the TCP 
flows simulated by the fluid model have the same behavior as those simulated by the packet 
source when sharing a bottleneck queue in a hybrid simulation. This further proves the 
correctness of the original fluid model and the hybrid simulation's ability to simulate the 
interaction between TCP flows in both fluid form and packet form. Also from this experiment, 
we can see the performance advantage brought by the fluid model from (b) in the Figure above. 
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Compared with a packet simulation, the speedup of this hybrid simulation depends on the 
amount of the packet traffic in the hybrid simulation. If Cpkt denotes the packet simulation cost, 
Chf denotes the fluid model solver computation cost in a hybrid simulation and Chp denotes the 
simulation cost for the packet traffic in the hybrid simulation, there is 

 

, and as the simulation cost of the packet traffic in a hybrid simulation with small network 
topology is almost the same as that in the packet simulation, the fraction of the packet traffic 
decides the upper bound of the speedup. For example, if 10% of the traffic is packet traffic, the 
speedup can goes up to at most 10. In this experiment, we see that when 10% of the traffic is 
packet traffic, the hybrid simulation reaches a speedup of 6.53 compared to the packet 
simulation. 

F5.4. Multiple Foreground Flows 

In this experiment, we show that the two-pass model hybrid simulation captures the additional 
interaction between multiple traversing foreground flows. 

The network under simulation is shown in the Figure below. Node S2, D2, S3 and D3 are four 
packet nodes connected to the fluid network via different access points. Class 0 and Class 1 are 
both classes of 10 TCP flows simulated in the fluid model. Class 2 is a class of 20 TCP flows. 
Class 3 is a class of 40 TCP flows. Class 0, 1 and 2 start at time 0. Class 3 is only active from 
30s to 60s. 

 

Figure 72:  Network with three bottlenecks 

The Figure below shows the matching simulation results between the hybrid simulation and 
the packet simulation. At 30s, the average TCP window size of Class 2 decreases because of the 
new traffic brought by Class 3, which is another foreground flow, and the queue behavior at 
each bottleneck also changes accordingly. At 60s, the network behavior changes back because 
Class 3 stops sending traffic. 
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Figure 73:  Hybrid simulation with multiple foreground flows 

F5.5 Experience with Large IP Networks 
In this section, we show the ability of the hybrid simulation to simulate a large IP network. We 
use the Inet Topology Generator from University of Michigan [14] and generate a network of 
3500 nodes and 11334 links, each with a capacity of 2.5 Gbps. Then we randomly create 5000 
classes of TCP flows which is a total of 12,378,340 TCP flows in the network. Then we 
randomly pick two nodes as the source and the destination of a UDP traffic. We set the UDP 
traffic as a CBR at 50 kbps with a packet size of 50 bytes. A 100 s simulation is 
performed. Our experiment is carried on a Dell Precision Workstation 530, which is 
configured with two Pentium IV processors (2.2 GHz) and 2 GB memory. Since our program is 
not parallelized, only one processor is utilized. We have taken several trials. On average, the 
simulation takes about 30 minutes and 659M memory. The Figure below shows the time 
sequence of the UDP packets between time 74 s and 75 s in one of the experiments. This UDP 
traffic has an average delay of 101.66ms and an average drop probability of 15.70%. 
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Figure 74:  Time sequence of the UDP traffic between 74 s and 75 s 

F6. Conclusion & Future Work 

We have developed a simulation method that takes the advantage of the highly efficient fluid 
model and at the same time provides detailed information at packet level for selected individual 
traffic flows. We achieve this by an effort to simulate the network using fluid model solvers and 
discrete event-driven simulators, the hybrid simulation. Two models are proposed to describe the 
interactions between the background TCP traffic and the foreground packet traffic. 
Synchronization between the fluid model solver and the simulator are analyzed. Simulation results 
show that our method maintains the performance advantage of the fluid model and generates 
accurate simulation results comparable to those given by the discrete event-driven simulator. Our 
work can be reached and downloaded at http: / / w w w -
n e t . c s . u m a s s . e d u / f l u i d / f f m . h t m l .  

As a future work, we will implement our hybrid simulation approach in more simulators and 
at the same time, incorporate new features of the fluid model as well as other network traffic 
models. Also, our current implementation in ns-2 could be further improved, such as 
supporting more functions and increasing its performance. Another exciting future work 
direction is to further boost the speed of the hybrid simulation such that the hybrid simulation 
can generate real time traffic information. This information can be used in network emulators 
to provide more controlled and more realistic delay and loss reference. Our current approach can 
handle real time traffic to some extent. Further performance boost can be reached by 
parallelization, for which the time-stepped nature of the fluid model solver is perfectly suitable. 

 




